ALEX Lesson Plans
Save to ALEX 
Share

Show Details
Title: Easy Equivalent Measures
Description:
Easy Equivalent Measures is an exciting, engaging lesson that will make this unpopular, hard skill EASY for your students. We will use Input/Output charts to demonstrate our knowledge of equivalent measures. This lesson will support the needs of all your diverse learners.
This lesson plan was created by exemplary Alabama Math Teachers through the AMSTI project.
Standard(s): [MA2013] (2) 14: Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes. [2MD1] [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (4) 19: Know relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb, oz; l, ml; and hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a twocolumn table. [4MD1]
Subject: Mathematics (2  4)
Title: Easy Equivalent Measures
Description: Easy Equivalent Measures is an exciting, engaging lesson that will make this unpopular, hard skill EASY for your students. We will use Input/Output charts to demonstrate our knowledge of equivalent measures. This lesson will support the needs of all your diverse learners.
This lesson plan was created by exemplary Alabama Math Teachers through the AMSTI project.
Save to ALEX 
Share

Show Details
Title: Inner and Outer Planets
Description:
As part of the space unit, students will learn about the physical and chemical components of the planets. The students will compare the planets in list form. It will also incorporate math by using measurement and numerical order.This lesson plan was created as a result of the Girls Engaged in Math and Science, GEMS Project funded by the Malone Family Foundation.
Standard(s): [ELA2013] (4) 39: Demonstrate command of the conventions of Standard English capitalization, punctuation, and spelling when writing. [L.4.2] [ELA2013] (4) 29: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. [W.4.8] [S1] (4) 10: Describe components of our solar system. [ELA] (4) 10: Apply mechanics in writing, including capitalization of business and friendly letter parts and envelope addresses and use of punctuation, including apostrophe with contractions; underlining or italicizing of book titles; and commas to separate items in a series and in a physical address. [ELA] (4) 12: Organize information on a specific topic obtained from gradeappropriate reference materials. [TC2] (35) 5: Practice safe use of technology systems and applications. [TC2] (35) 6: Describe social and ethical behaviors related to technology use. [TC2] (35) 8: Collect information from a variety of digital sources. [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (4) 7: Read and write multidigit whole numbers using baseten numerals, number names, and expanded form. Compare two multidigit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons. [4NBT2] [MA2013] (4) 19: Know relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb, oz; l, ml; and hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a twocolumn table. [4MD1] [MA2013] (4) 21: Apply the area and perimeter formulas for rectangles in realworld and mathematical problems. [4MD3] [MA2013] (5) 6: Read, write, and compare decimals to thousandths. [5NBT3]
Subject: English Language Arts (4), or English Language Arts (4), or Mathematics (3  5), or Science (4), or Technology Education (3  5)
Title: Inner and Outer Planets
Description: As part of the space unit, students will learn about the physical and chemical components of the planets. The students will compare the planets in list form. It will also incorporate math by using measurement and numerical order.This lesson plan was created as a result of the Girls Engaged in Math and Science, GEMS Project funded by the Malone Family Foundation.
Save to ALEX 
Share

Show Details
Title: Friction Faction
Description:
The students will use different surfaces to test which will cause less friction on a ball. This will let the students determine how friction affects the distance an object in motion will go. This lesson will include cooperative grouping for the activity and whole group discussion of the results.This lesson plan was created as a result of the Girls Engaged in Math and Science, GEMS Project funded by the Malone Family Foundation.
Standard(s): [ELA2013] (4) 23: Write informative or explanatory texts to examine a topic and convey ideas and information clearly. [W.4.2] [ELA2013] (4) 39: Demonstrate command of the conventions of Standard English capitalization, punctuation, and spelling when writing. [L.4.2] [ELA2013] (4) 35: Report on a topic or text, tell a story, or recount an experience in an organized manner, using appropriate facts and relevant, descriptive details to support main ideas or themes; speak clearly at an understandable pace. [SL.4.4] [ELA2013] (4) 29: Recall relevant information from experiences or gather relevant information from print and digital sources; take notes and categorize information, and provide a list of sources. [W.4.8] [S1] (4) 4: Describe effects of friction on moving objects. [ELA] (4) 5: Use a wide range of strategies and skills, including using sentence structure, locating information, and distinguishing fact from fiction, to comprehend fourthgrade informational and functional reading materials. [ELA] (4) 9: Respond in writing to openended questions. [ELA] (4) 14: Identify strategies of a skillful listener, including attending to the listening task and assigning meaning to the message. [ELA2013] (4) 16: Interpret information presented visually, orally, or quantitatively (e.g., in charts, graphs, diagrams, time lines, animations, or interactive elements on Web pages) and explain how the information contributes to an understanding of the text in which it appears. [RI.4.7] [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (4) 19: Know relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb, oz; l, ml; and hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a twocolumn table. [4MD1]
Subject: English Language Arts (4), or English Language Arts (4), or Mathematics (3  4), or Science (4)
Title: Friction Faction
Description: The students will use different surfaces to test which will cause less friction on a ball. This will let the students determine how friction affects the distance an object in motion will go. This lesson will include cooperative grouping for the activity and whole group discussion of the results.This lesson plan was created as a result of the Girls Engaged in Math and Science, GEMS Project funded by the Malone Family Foundation.
Save to ALEX 
Share

Show Details
Title: Meteor or Meteorite
Description:
Students will learn the difference between a meteor and a meteorite. Students will perform an experiment to discover how the size and weight of an object determines the size of the impact crater.
Standard(s): [S1] (4) 10: Describe components of our solar system. [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (3) 18: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one and twostep "how many more" and "how many less" problems using information presented in scaled bar graphs. [3MD3]
Subject: Mathematics (3), or Science (4)
Title: Meteor or Meteorite
Description: Students will learn the difference between a meteor and a meteorite. Students will perform an experiment to discover how the size and weight of an object determines the size of the impact crater.
Save to ALEX 
Share

Show Details
Title: Teaching Measurement through Literature and Manipulatives
Description:
The tradebook, Who Sank the Boat? by Pamela Allen, is an excellent tool in teaching measurement. Students will engage in activities involving different types of measurement. In the story, five animal friends decide to take a boat ride. As each animal climbs into the boat it sinks lower and lower in the water. The phrase, "Do you know who sank the boat?" encourages children to make predictions.
Standard(s): [ELA2013] (4) 12: Explain events, procedures, ideas, or concepts in a historical, scientific, or technical text, including what happened and why, based on specific information in the text. [RI.4.3] [ELA2013] (4) 41: Determine or clarify the meaning of unknown and multiplemeaning words and phrases based on Grade 4 reading and content, choosing flexibly from a range of strategies. [L.4.4] [ELA2013] (4) 11: Determine the main idea of a text and explain how it is supported by key details; summarize the text. [RI.4.2] [ELA2013] (4) 7: Make connections between the text of a story or drama and a visual or oral presentation of the text, identifying where each version reflects specific descriptions and directions in the text. [RL.4.7] [ELA] (4) 2: Demonstrate reading vocabulary knowledge, including recognition of a variety of synonyms and antonyms. [ELA] (4) 3: Use a wide range of strategies, including distinguishing fiction from nonfiction and making inferences, to comprehend fourthgrade recreational reading materials in a variety of genres. [ELA] (4) 7: Compare story elements and the experiences and feelings of literary characters to students' lives. [ELA] (4) 13: Demonstrate eye contact, articulation, and appropriate voice intonation with descriptive presentations. [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2]
Subject: English Language Arts (4), or English Language Arts (4), or Mathematics (3)
Title: Teaching Measurement through Literature and Manipulatives
Description: The tradebook, Who Sank the Boat? by Pamela Allen, is an excellent tool in teaching measurement. Students will engage in activities involving different types of measurement. In the story, five animal friends decide to take a boat ride. As each animal climbs into the boat it sinks lower and lower in the water. The phrase, "Do you know who sank the boat?" encourages children to make predictions.
Save to ALEX 
Share

Show Details
Title: Out Of This World
Description:
During this lesson, students will begin to realize that the solar system is a vast unexplored frontier. Students will have the opportunity to explore the different aspects of our solar system.
Standard(s): [TC2] (35) 9: Use technology tools to organize, interpret, and display data. [TC2] (35) 10: Use digital environments to collaborate and communicate. [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (3) 18: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one and twostep "how many more" and "how many less" problems using information presented in scaled bar graphs. [3MD3] [MA2013] (3) 19: Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot where the horizontal scale is marked off in appropriate units — whole numbers, halves, or quarters. [3MD4]
Subject: Mathematics (3), or Technology Education (3  5)
Title: Out Of This World
Description: During this lesson, students will begin to realize that the solar system is a vast unexplored frontier. Students will have the opportunity to explore the different aspects of our solar system.
Save to ALEX 
Share

Show Details
Title: How Do You Measure Up?
Description:
During this handson lesson, students use reasoning skills in making predictions and then applying skills to obtain accurate measurements. They navigate websites to practice their measuring skills. Students also get a brief overview of the history of measurement.
Standard(s): [TC2] (35) 8: Collect information from a variety of digital sources. [TC2] (35) 11: Use digital tools to analyze authentic problems. [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (3) 19: Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot where the horizontal scale is marked off in appropriate units — whole numbers, halves, or quarters. [3MD4] [MA2013] (4) 19: Know relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb, oz; l, ml; and hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a twocolumn table. [4MD1]
Subject: Mathematics (3  4), or Technology Education (3  5)
Title: How Do You Measure Up?
Description: During this handson lesson, students use reasoning skills in making predictions and then applying skills to obtain accurate measurements. They navigate websites to practice their measuring skills. Students also get a brief overview of the history of measurement.
Save to ALEX 
Share

Show Details
Title: Students Standing Tall
Description:
During this lesson, students use data they collect from a class activity to find the mean, mode, median, and range. Students utilize the Internet as a source of information by viewing websites to learn how to find the mean, median, mode, and range of data.
Standard(s): [TC2] (35) 8: Collect information from a variety of digital sources. [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (4) 19: Know relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb, oz; l, ml; and hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a twocolumn table. [4MD1] [MA2013] (5) 18: Convert among differentsized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multistep, realworld problems. [5MD1]
Subject: Mathematics (3  5), or Technology Education (3  5)
Title: Students Standing Tall
Description: During this lesson, students use data they collect from a class activity to find the mean, mode, median, and range. Students utilize the Internet as a source of information by viewing websites to learn how to find the mean, median, mode, and range of data.
Save to ALEX 
Share

Show Details
Title: Mysterious Matter
Description:
During this lesson, students will have the opportunity to create a mysterious substance. They will use experiments to try to determine the state of matter of various substances. This lesson is a fun, handson way to get students excited about matter.
Standard(s): [TC2] (35) 5: Practice safe use of technology systems and applications. [TC2] (35) 6: Describe social and ethical behaviors related to technology use. [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (3) 18: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one and twostep "how many more" and "how many less" problems using information presented in scaled bar graphs. [3MD3]
Subject: Mathematics (3), or Technology Education (3  5)
Title: Mysterious Matter
Description: During this lesson, students will have the opportunity to create a mysterious substance. They will use experiments to try to determine the state of matter of various substances. This lesson is a fun, handson way to get students excited about matter.
Save to ALEX 
Share

Show Details
Title: Make a Leaf Graph
Description:
This lesson should be taught during a unit on plants or trees. During this lesson students will collect leaves and use rulers to measure each leaf. The students will have the opportunity to create a handmade bar graph as well as a computergenerated bar graph. They will also compare a bar graph to a pie graph to determine which graph is easier to read.
Standard(s): [TC2] (35) 9: Use technology tools to organize, interpret, and display data. [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2]
Subject: Mathematics (3), or Technology Education (3  5)
Title: Make a Leaf Graph
Description: This lesson should be taught during a unit on plants or trees. During this lesson students will collect leaves and use rulers to measure each leaf. The students will have the opportunity to create a handmade bar graph as well as a computergenerated bar graph. They will also compare a bar graph to a pie graph to determine which graph is easier to read.
Save to ALEX 
Share

Show Details
Title: The Water Cycle
Description:
During this lesson, students will learn that water is constantly being recycled through the atmosphere and how this affects us. Students will explore the water cycle on the Internet. Students create different types of weather situations to see how the water cycle works. Mathematics skills will be used to determine results from the observations.
Standard(s): [S1] (3) 12: Identify conditions that result in specific weather phenomena, including thunderstorms, tornadoes, and hurricanes. [TC2] (35) 8: Collect information from a variety of digital sources. [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (3) 18: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one and twostep "how many more" and "how many less" problems using information presented in scaled bar graphs. [3MD3] [MA2013] (3) 19: Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot where the horizontal scale is marked off in appropriate units — whole numbers, halves, or quarters. [3MD4] [MA2013] (4) 19: Know relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb, oz; l, ml; and hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a twocolumn table. [4MD1] [MA2013] (4) 20: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. [4MD2] [MA2013] (5) 13: Interpret a fraction as division of the numerator by the denominator (^{a}/_{b} = a ÷ b). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. [5NF3] [MA2013] (5) 16: Solve realworld problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem. [5NF6] [MA2013] (5) 18: Convert among differentsized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multistep, realworld problems. [5MD1] [MA2013] (5) 19: Make a line plot to display a data set of measurements in fractions of a unit (^{1}/_{2}, ^{1}/_{4}, ^{1}/_{8}).
Use operations on fractions for this grade to solve problems involving information presented in line plots. [5MD2] [MA2013] (5) 22: Relate volume to the operations of multiplication and addition, and solve realworld and mathematical problems involving volume. [5MD5] [MA2013] (5) 24: Represent realworld and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. [5G2]
Subject: Mathematics (3  5), or Science (3), or Technology Education (3  5)
Title: The Water Cycle
Description: During this lesson, students will learn that water is constantly being recycled through the atmosphere and how this affects us. Students will explore the water cycle on the Internet. Students create different types of weather situations to see how the water cycle works. Mathematics skills will be used to determine results from the observations.
Save to ALEX 
Share

Show Details
Title: Explosive Fun with Volcanoes
Description:
In this lesson the students will work in groups to make their own volcanoes and learn the different aspects of a volcano.
Standard(s): [S1] (4) 7: Describe geological features of Earth, including bodies of water, beaches, ocean ridges, continental shelves, plateaus, faults, canyons, sand dunes, and ice caps. [ELA2013] (4) 23: Write informative or explanatory texts to examine a topic and convey ideas and information clearly. [W.4.2] [ELA2013] (4) 1: Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. [RL.4.1] [ELA] (4) 3: Use a wide range of strategies, including distinguishing fiction from nonfiction and making inferences, to comprehend fourthgrade recreational reading materials in a variety of genres. [ELA] (4) 8: Compose descriptive texts using an introductory paragraph, sensory details, vivid language, and a conclusion. [TC2] (35) 1: Use input and output devices of technology systems. [TC2] (35) 5: Practice safe use of technology systems and applications. [TC2] (35) 8: Collect information from a variety of digital sources. [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (4) 19: Know relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb, oz; l, ml; and hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a twocolumn table. [4MD1]
Subject: English Language Arts (4), or English Language Arts (4), or Mathematics (3  4), or Science (4), or Technology Education (3  5)
Title: Explosive Fun with Volcanoes
Description: In this lesson the students will work in groups to make their own volcanoes and learn the different aspects of a volcano.
Save to ALEX 
Share

Show Details
Title: What do Plants Need?
Description:
In this lesson, students will understand that in order to grow healthy plants, soil, water, light, and air must be provided. Students will use math skills such as measurement and science process skills such as observation, comparing, and recording data.
Standard(s): [S1] (3) 7: Describe the life cycle of plants, including seed, seed germination, growth, and reproduction. [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (0) 15: Directly compare two objects, with a measurable attribute in common, to see which object has "more of" or "less of" the attribute, and describe the difference. [KMD2] [MA2013] (0) 16: Classify objects into given categories; count the number of objects in each category, and sort the categories by count. (Limit category counts to be less than or equal to 10.) [KMD3] [MA2013] (1) 16: Express the length of an object as a whole number of length units by laying multiple copies of a shorter object (the length unit) end to end; understand that the length measurement of an object is the number of samesize length units that span it with no gaps or overlaps. Limit to contexts where the object being measured is spanned by a whole number of length units with no gaps or overlaps. [1MD2] [MA2013] (1) 18: Organize, represent, and interpret data with up to three categories; ask and answer questions about the total number of data points, how many in each category, and how many more or less are in one category than in another. [1MD4] [MA2013] (2) 14: Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes. [2MD1] [MA2013] (2) 17: Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit. [2MD4] [MA2013] (2) 22: Generate measurement data by measuring lengths of several objects to the nearest whole unit or by making repeated measurements of the same object. Show the measurements by making a line plot where the horizontal scale is marked off in wholenumber units. [2MD9] [MA2013] (2) 23: Draw a picture graph and a bar graph (with singleunit scale) to represent a data set with up to four categories. Solve simple puttogether, takeapart, and compare problems using information presented in a bar graph. (See Appendix A, Table 1.) [2MD10]
Subject: Mathematics (K  3), or Science (3)
Title: What do Plants Need?
Description: In this lesson, students will understand that in order to grow healthy plants, soil, water, light, and air must be provided. Students will use math skills such as measurement and science process skills such as observation, comparing, and recording data.
Save to ALEX 
Share

Show Details
Title: Inch by Inch
Description:
In this lesson students will do a variety of learning activities while they meet many math, science, and language arts objectives. Students will measure items, analyze and record data, listen to instructions, and follow directions. They will also follow a recipe to make a creative dessert.
Standard(s): [ELA] (3) 3: Use a wide range of strategies, including using context clues and predicting outcomes, to comprehend thirdgrade recreational reading materials in a variety of genres. [ELA] (3) 9: Compose narrative texts using an introductory paragraph, specific time frames, clear sequencing of events, and a conclusion. [ELA] (3) 10: Apply mechanics in writing, including capitalization of proper nouns and titles of people and appropriate end marks, abbreviations, and commas with dates. [ELA] (3) 14: Demonstrate eye contact, articulation, and appropriate voice intonation with oral narrative presentations. [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (3) 18: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one and twostep "how many more" and "how many less" problems using information presented in scaled bar graphs. [3MD3] [ELA2013] (3) 24: Write narratives to develop real or imagined experiences or events using effective technique, descriptive details, and clear event sequences. [W.3.3] [ELA2013] (3) 38: Demonstrate command of the conventions of Standard English capitalization, punctuation, and spelling when writing. [L.3.2]
Subject: English Language Arts (3), or English Language Arts (3), or Mathematics (3)
Title: Inch by Inch
Description: In this lesson students will do a variety of learning activities while they meet many math, science, and language arts objectives. Students will measure items, analyze and record data, listen to instructions, and follow directions. They will also follow a recipe to make a creative dessert.
Thinkfinity Lesson Plans
Save to ALEX 
Share

Show Details
Title: Magnificent Measurement
Description:
In this sevenlesson unit, from Illuminations, students build skills required for understanding the attributes of measurement as well as the units, systems, and processes of measurement. Students use objects, pictures, symbols and books. They engage in measurement activities involving length, volume, weight, area and time. They practice measuring using standard and nonstandard units.
Standard(s): [MA2013] (0) 14: Describe measurable attributes of objects such as length or weight. Describe several measurable attributes of a single object. [KMD1] [MA2013] (1) 15: Order three objects by length; compare the lengths of two objects indirectly by using a third object. [1MD1] [MA2013] (2) 14: Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes. [2MD1] [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2]
Subject: Language Arts,Mathematics Title: Magnificent Measurement
Description: In this sevenlesson unit, from Illuminations, students build skills required for understanding the attributes of measurement as well as the units, systems, and processes of measurement. Students use objects, pictures, symbols and books. They engage in measurement activities involving length, volume, weight, area and time. They practice measuring using standard and nonstandard units. Thinkfinity Partner: Illuminations Grade Span: K,PreK,1,2
Save to ALEX 
Share

Show Details
Title: Drop by Drop
Description:
In this lesson, one of a multipart unit from Illuminations, students recognize and use the attributes of volume. They engage in activities that promote understanding of how to measure volume using standard units. Several pieces of literature appropriate for use with this lesson are suggested.
Standard(s): [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2]
Subject: Language Arts,Mathematics Title: Drop by Drop
Description: In this lesson, one of a multipart unit from Illuminations, students recognize and use the attributes of volume. They engage in activities that promote understanding of how to measure volume using standard units. Several pieces of literature appropriate for use with this lesson are suggested. Thinkfinity Partner: Illuminations Grade Span: K,PreK,1,2
Save to ALEX 
Share

Show Details
Title: Maintaining the Balance
Description:
In this lesson for grades 3 and 4, one of a multipart unit from Illuminations, students participate in activities in which they focus on patterns and relations that can be developed from the exploration of balance, mass, length of the mass arm, and the position of the fulcrum.
Standard(s): [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (3) 18: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one and twostep "how many more" and "how many less" problems using information presented in scaled bar graphs. [3MD3]
Subject: Mathematics Title: Maintaining the Balance
Description: In this lesson for grades 3 and 4, one of a multipart unit from Illuminations, students participate in activities in which they focus on patterns and relations that can be developed from the exploration of balance, mass, length of the mass arm, and the position of the fulcrum. Thinkfinity Partner: Illuminations Grade Span: 3,4,5
Save to ALEX 
Share

Show Details
Title: Getting the Facts
Description:
In this lesson, one of a multipart unit from Illuminations, students participate in activities in which they focus on connections between mathematics and children's literature. They listen to the story Counting on Frank, by Rod Clement, and then solve problems involving estimation of volume.
Standard(s): [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [ELA2013] (3) 11: Determine the main idea of a text; recount the key details and explain how they support the main idea. [RI.3.2] [ELA2013] (3) 16: Use information gained from illustrations (e.g., maps, photographs) and the words in a text to demonstrate understanding of the text (e.g., where, when, why, and how key events occur). [RI.3.7] [ELA2013] (4) 1: Refer to details and examples in a text when explaining what the text says explicitly and when drawing inferences from the text. [RL.4.1] [ELA2013] (4) 28: Conduct short research projects that build knowledge through investigation of different aspects of a topic. [W.4.7] [ELA2013] (5) 28: Conduct short research projects that use several sources to build knowledge through investigation of different aspects of a topic. [W.5.7]
Subject: Language Arts,Mathematics Title: Getting the Facts
Description: In this lesson, one of a multipart unit from Illuminations, students participate in activities in which they focus on connections between mathematics and children's literature. They listen to the story Counting on Frank, by Rod Clement, and then solve problems involving estimation of volume. Thinkfinity Partner: Illuminations Grade Span: 3,4,5
Save to ALEX 
Share

Show Details
Title: Clothing Sizes
Description:
This reproducible worksheet, from an Illuminations lesson, prompts students to analyze measurements of their body, specifically as they relate to clothing sizes.
Standard(s): [MA2013] (3) 3: Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. (See Appendix A, Table 2.) [3OA3] [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (3) 19: Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot where the horizontal scale is marked off in appropriate units — whole numbers, halves, or quarters. [3MD4] [MA2013] (3) 20: Recognize area as an attribute of plane figures, and understand concepts of area measurement. [3MD5] [MA2013] (4) 19: Know relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb, oz; l, ml; and hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a twocolumn table. [4MD1] [MA2013] (4) 20: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. [4MD2] [MA2013] (4) 22: Make a line plot to display a data set of measurements in fractions of a unit (^{1}/_{2}, ^{1}/_{4}, ^{1}/_{8}). Solve problems involving addition and subtraction of fractions by using information presented in line plots. [4MD4] [MA2013] (4) 23: Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement. [4MD5] [MA2013] (5) 18: Convert among differentsized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multistep, realworld problems. [5MD1] [MA2013] (5) 19: Make a line plot to display a data set of measurements in fractions of a unit (^{1}/_{2}, ^{1}/_{4}, ^{1}/_{8}).
Use operations on fractions for this grade to solve problems involving information presented in line plots. [5MD2] [MA2013] (5) 20: Recognize volume as an attribute of solid figures, and understand concepts of volume measurement. [5MD3]
Subject: Mathematics Title: Clothing Sizes
Description: This reproducible worksheet, from an Illuminations lesson, prompts students to analyze measurements of their body, specifically as they relate to clothing sizes. Thinkfinity Partner: Illuminations Grade Span: 3,4,5
Save to ALEX 
Share

Show Details
Title: Exploration of a Balance
Description:
In this fourlesson unit from Illuminations, students participate in activities in which they focus on patterns and relations that can be developed from the exploration of balance, mass, length of the mass arm, and the position of the fulcrum. This unit includes an individual activity for four different levels from grade 1 to grade 8.
Standard(s): [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (3) 20: Recognize area as an attribute of plane figures, and understand concepts of area measurement. [3MD5] [MA2013] (4) 19: Know relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb, oz; l, ml; and hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a twocolumn table. [4MD1] [MA2013] (6) 14: Apply the properties of operations to generate equivalent expressions. [6EE3] [MA2013] (6) 15: Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). [6EE4]
Subject: Mathematics Title: Exploration of a Balance
Description: In this fourlesson unit from Illuminations, students participate in activities in which they focus on patterns and relations that can be developed from the exploration of balance, mass, length of the mass arm, and the position of the fulcrum. This unit includes an individual activity for four different levels from grade 1 to grade 8. Thinkfinity Partner: Illuminations Grade Span: 1,2,3,4,5,6,7,8
Save to ALEX 
Share

Show Details
Title: Mathematics and Children's Literature
Description:
In this fivelesson unit, from Illuminations, students participate in activities in which they focus on connections between mathematics and children s literature. Five pieces of literature are applied to teaching a wide range of topics in the mathematics curriculum, from sorting and classifying to the meaning of averages.
Standard(s): [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (3) 24: Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories. [3G1] [MA2013] (6) 3: Use ratio and rate reasoning to solve realworld and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations. [6RP3] [MA2013] (6) 13: Write, read, and evaluate expressions in which letters stand for numbers. [6EE2] [MA2013] (6) 22: Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas V = lwh and V = Bh to find volumes of right rectangular prisms with fractional edge lengths in the context of solving realworld and mathematical problems. [6G2] [MA2013] (6) 23: Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate. Apply these techniques in the context of solving realworld and mathematical problems. [6G3] [MA2013] (7) 11: Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale. [7G1] [MA2013] (7) 12: Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle. [7G2] [MA2013] (7) 16: Solve realworld and mathematical problems involving area, volume, and surface area of two and threedimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. [7G6] [MA2013] (8) 24: Know the formulas for the volumes of cones, cylinders, and spheres, and use them to solve realworld and mathematical problems. [8G9] [ELA2013] (3) 29: Recall information from experiences or gather information from print and digital sources; take brief notes on sources and sort evidence into provided categories. [W.3.8] [ELA2013] (5) 1: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. [RL.5.1] [ELA2013] (5) 10: Quote accurately from a text when explaining what the text says explicitly and when drawing inferences from the text. [RI.5.1] [ELA2013] (5) 13: Determine the meaning of general academic and domainspecific words and phrases in a text relevant to a Grade 5 topic or subject area. [RI.5.4] [ELA2013] (5) 18: Integrate information from several texts on the same topic in order to write or speak about the subject knowledgeably. [RI.5.9] [ELA2013] (6) 7: Compare and contrast the experience of reading a story, drama, or poem to listening to or viewing an audio, video, or live version of the text, including contrasting what they "see" and "hear" when reading the text to what they perceive when they listen or watch. [RL.6.7] [ELA2013] (6) 8: Differentiate among odes, ballads, epic poetry, and science fiction. (Alabama) [ELA2013] (6) 9: Compare and contrast texts in different forms or genres (e.g., stories and poems; historical novels and fantasy stories) in terms of their approaches to similar themes and topics. [RL.6.9] [ELA2013] (6) 10: By the end of the year, read and comprehend literature, including stories, dramas, and poems, in the Grades 68 text complexity band proficiently, with scaffolding as needed at the high end of the range. [RL.6.10] [ELA2013] (7) 7: Compare and contrast a written story, drama, or poem to its audio, filmed, staged, or multimedia version, analyzing the effects of techniques unique to each medium (e.g., lighting, sound, color, or camera focus and angles in a film). [RL.7.7] [ELA2013] (7) 8: Compare and contrast a fictional portrayal of a time, place, or character and a historical account of the same period as a means of understanding how authors of fiction use or alter history. [RL.7.9] [ELA2013] (7) 9: By the end of the year, read and comprehend literature, including stories, dramas, and poems, in the Grades 68 text complexity band proficiently, with scaffolding as needed at the high end of the range. [RL.7.10] [ELA2013] (8) 7: Analyze the extent to which a filmed or live production of a story or drama stays faithful to or departs from the text or script, evaluating the choices made by the director or actors. [RL.8.7] [ELA2013] (8) 8: Analyze how a modern work of fiction draws on themes, patterns of events, or character types from myths, traditional stories, or religious works such as the Bible, including describing how the material is rendered new. [RL.8.9] [ELA2013] (8) 9: By the end of the year, read and comprehend literature, including stories, dramas, and poems, at the high end of Grades 68 text complexity band independently and proficiently. [RL.8.10]
Subject: Language Arts,Mathematics Title: Mathematics and Children's Literature
Description: In this fivelesson unit, from Illuminations, students participate in activities in which they focus on connections between mathematics and children s literature. Five pieces of literature are applied to teaching a wide range of topics in the mathematics curriculum, from sorting and classifying to the meaning of averages. Thinkfinity Partner: Illuminations Grade Span: K,PreK,1,2,3,4,5,6,7,8
Save to ALEX 
Share

Show Details
Title: Ideas With Food
Description:
In this threelesson unit, from Illuminations, students focus on organization, preparation, and presentation of some simple foods as a way to apply various mathematical concepts, with problemsolving techniques being central to almost all the activities. Students utilize measuring techniques and food preparation experiences to practice various math concepts.
Standard(s): [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2]
Subject: Mathematics Title: Ideas With Food
Description: In this threelesson unit, from Illuminations, students focus on organization, preparation, and presentation of some simple foods as a way to apply various mathematical concepts, with problemsolving techniques being central to almost all the activities. Students utilize measuring techniques and food preparation experiences to practice various math concepts. Thinkfinity Partner: Illuminations Grade Span: K,PreK,1,2,3,4,5,6,7,8
Web Resources
Interactives/Games
Save to ALEX 
Share

Show Details
Title: Metric Minds
Description:
Adapted Mind, a Better Way to Learn Math, contains an interactive Metric System Game for students to practice metric conversions.
Standard(s): [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (4) 19: Know relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb, oz; l, ml; and hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a twocolumn table. [4MD1]
Metric Minds
http://www.adaptedmi...
Adapted Mind, a Better Way to Learn Math, contains an interactive Metric System Game for students to practice metric conversions.
Learning Activities
Save to ALEX 
Share

Show Details
Title: ABC Teach  Measurement
Description:
These "Everyday Measurements" worksheets give students an opportunity to measure everyday objects and/or complete perimeter.
Standard(s): [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (3) 20: Recognize area as an attribute of plane figures, and understand concepts of area measurement. [3MD5] [MA2013] (3) 23: Solve realworld and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters. [3MD8] [MA2013] (4) 19: Know relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb, oz; l, ml; and hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a twocolumn table. [4MD1] [MA2013] (4) 21: Apply the area and perimeter formulas for rectangles in realworld and mathematical problems. [4MD3] [MA2013] (4) 24: Measure angles in wholenumber degrees using a protractor. Sketch angles of specified measure. [4MD6] [MA2013] (5) 18: Convert among differentsized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multistep, realworld problems. [5MD1] [MA2013] (5) 21: Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units. [5MD4]
ABC Teach  Measurement
http://www.abcteach....
These "Everyday Measurements" worksheets give students an opportunity to measure everyday objects and/or complete perimeter.
Save to ALEX 
Share

Show Details
Title: Teaching Measurement
Description:
This Web page focuses on nonstandard units of measurement.
Standard(s): [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (3) 20: Recognize area as an attribute of plane figures, and understand concepts of area measurement. [3MD5] [MA2013] (3) 21: Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units). [3MD6]
Teaching Measurement
http://www.kindergar...
This Web page focuses on nonstandard units of measurement.
Thinkfinity Informational Materials
Save to ALEX 
Share

Show Details
Title: Number and Operations Web Links
Description:
This collection of Web links, reviewed and presented by Illuminations, offers teachers and students information about and practice in concepts related to arithmetic. Users can read the Illuminations Editorial Board's review of each Web site, or choose to link directly to the sites.
Standard(s): [MA2013] (0) 1: Count to 100 by ones and by tens. [KCC1] [MA2013] (0) 2: Count forward beginning from a given number within the known sequence (instead of having to begin at 1). [KCC2] [MA2013] (0) 3: Write numbers from 0 to 20. Represent a number of objects with a written numeral 020 (with 0 representing a count of no objects). [KCC3] [MA2013] (0) 4: Understand the relationship between numbers and quantities; connect counting to cardinality. [KCC4] [MA2013] (0) 5: Count to answer "how many?" questions about as many as 20 things arranged in a line, a rectangular array, or a circle, or as many as 10 things in a scattered configuration; given a number from 120, count out that many objects. [KCC5] [MA2013] (3) 1: Interpret products of whole numbers, e.g., interpret 5 x 7 as the total number of objects in 5 groups of 7 objects each. [3OA1] [MA2013] (3) 2: Interpret wholenumber quotients of whole numbers, e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. [3OA2] [MA2013] (3) 3: Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. (See Appendix A, Table 2.) [3OA3] [MA2013] (3) 4: Determine the unknown whole number in a multiplication or division equation relating three whole numbers. [3OA4] [MA2013] (3) 5: Apply properties of operations as strategies to multiply and divide. (Students need not use formal terms for these properties.) [3OA5] [MA2013] (3) 6: Understand division as an unknownfactor problem. [3OA6] [MA2013] (3) 7: Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that 8 x 5 = 40, one knows 40 ÷ 5 = 8) or properties of operations. By the end of Grade 3, know from memory all products of two onedigit numbers. [3OA7] [MA2013] (3) 8: Solve twostep word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. (This standard is limited to problems posed with whole numbers and having wholenumber answers; students should know how to perform operations in the conventional order when there are no parentheses to specify a particular order (Order of Operations).) [3OA8] [MA2013] (3) 9: Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. [3OA9] [MA2013] (3) 10: Use place value understanding to round whole numbers to the nearest 10 or 100. [3NBT1] [MA2013] (3) 11: Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. [3NBT2] [MA2013] (3) 12: Multiply onedigit whole numbers by multiples of 10 in the range 10  90 (e.g., 9 x 80, 5 x 60) using strategies based on place value and properties of operations. [3NBT3] [MA2013] (3) 13: Understand a fraction ^{1}/_{b} as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction ^{a}/_{b} as the quantity formed by a parts and size ^{1}/_{b}. [3NF1] [MA2013] (3) 14: Understand a fraction as a number on the number line; represent fractions on a number line diagram. [3NF2] [MA2013] (3) 15: Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. [3NF3] [MA2013] (3) 16: Tell and write time to the nearest minute, and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram. [3MD1] [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (3) 18: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one and twostep "how many more" and "how many less" problems using information presented in scaled bar graphs. [3MD3] [MA2013] (3) 19: Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot where the horizontal scale is marked off in appropriate units — whole numbers, halves, or quarters. [3MD4] [MA2013] (3) 20: Recognize area as an attribute of plane figures, and understand concepts of area measurement. [3MD5] [MA2013] (3) 21: Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units). [3MD6] [MA2013] (3) 22: Relate area to the operations of multiplication and addition. [3MD7] [MA2013] (3) 23: Solve realworld and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters. [3MD8] [MA2013] (3) 24: Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories. [3G1] [MA2013] (3) 25: Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. [3G2] [MA2013] (4) 1: Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 x 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations. [4OA1] [MA2013] (4) 2: Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison. (See Appendix A, Table 2.) [4OA2] [MA2013] (4) 3: Solve multistep word problems posed with whole numbers and having wholenumber answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. [4OA3] [MA2013] (4) 4: Find all factor pairs for a whole number in the range 1100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1100 is a multiple of a given onedigit number. Determine whether a given whole number in the range 1100 is prime or composite. [4OA4] [MA2013] (4) 5: Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. [4OA5] [MA2013] (4) 6: Recognize that in a multidigit whole number, a digit in one place represents ten times what it represents in the place to its right. [4NBT1] [MA2013] (4) 7: Read and write multidigit whole numbers using baseten numerals, number names, and expanded form. Compare two multidigit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons. [4NBT2] [MA2013] (4) 8: Use place value understanding to round multidigit whole numbers to any place. [4NBT3] [MA2013] (4) 9: Fluently add and subtract multidigit whole numbers using the standard algorithm. [4NBT4] [MA2013] (4) 10: Multiply a whole number of up to four digits by a onedigit whole number, and multiply two twodigit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. [4NBT5] [MA2013] (4) 11: Find wholenumber quotients and remainders with up to fourdigit dividends and onedigit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. [4NBT6] [MA2013] (4) 12: Explain why a fraction ^{a}/_{b} is equivalent to a fraction ^{nxa}/_{nxb} by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions. [4NF1] [MA2013] (4) 13: Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators or by comparing to a benchmark fraction such as ^{1}/_{2}. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model. [4NF2] [MA2013] (4) 14: Understand a fraction ^{a}/_{b} with a > 1 as a sum of fractions ^{1}/_{b}. [4NF3] [MA2013] (4) 15: Apply and extend previous understandings of multiplication to multiply a fraction by a whole number. [4NF4] [MA2013] (4) 16: Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100. (Students who can generate equivalent fractions can develop strategies for adding fractions with unlike denominators in general. But addition and subtraction with unlike denominators in general is not a requirement at this grade.) [4NF5] [MA2013] (4) 17: Use decimal notation for fractions with denominators 10 or 100. [4NF6] [MA2013] (4) 18: Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model. [4NF7] [MA2013] (4) 19: Know relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb, oz; l, ml; and hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a twocolumn table. [4MD1] [MA2013] (4) 20: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. [4MD2] [MA2013] (4) 21: Apply the area and perimeter formulas for rectangles in realworld and mathematical problems. [4MD3] [MA2013] (4) 22: Make a line plot to display a data set of measurements in fractions of a unit (^{1}/_{2}, ^{1}/_{4}, ^{1}/_{8}). Solve problems involving addition and subtraction of fractions by using information presented in line plots. [4MD4] [MA2013] (4) 23: Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement. [4MD5] [MA2013] (4) 24: Measure angles in wholenumber degrees using a protractor. Sketch angles of specified measure. [4MD6] [MA2013] (4) 25: Recognize angle measure as additive. When an angle is decomposed into nonoverlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in realworld or mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure. [4MD7] [MA2013] (4) 26: Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in twodimensional figures. [4G1] [MA2013] (4) 27: Classify twodimensional figures based on the presence or absence of parallel or perpendicular lines or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles. [4G2] [MA2013] (4) 28: Recognize a line of symmetry for a twodimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify linesymmetric figures and draw lines of symmetry. [4G3] [MA2013] (5) 1: Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. [5OA1] [MA2013] (5) 2: Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. [5OA2] [MA2013] (5) 3: Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. [5OA3] [MA2013] (5) 4: Recognize that in a multidigit number, a digit in one place represents 10 times as much as it represents in the place to its right and ^{1}/_{10} of what it represents in the place to its left. [5NBT1] [MA2013] (5) 5: Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use wholenumber exponents to denote powers of 10. [5NBT2] [MA2013] (5) 6: Read, write, and compare decimals to thousandths. [5NBT3] [MA2013] (5) 7: Use place value understanding to round decimals to any place. [5NBT4] [MA2013] (5) 8: Fluently multiply multidigit whole numbers using the standard algorithm. [5NBT5] [MA2013] (5) 9: Find wholenumber quotients of whole numbers with up to fourdigit dividends and twodigit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. [5NBT6] [MA2013] (5) 10: Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method, and explain the reasoning used. [5NBT7] [MA2013] (5) 11: Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. [5NF1] [MA2013] (5) 12: Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally, and assess the reasonableness of answers. [5NF2] [MA2013] (5) 13: Interpret a fraction as division of the numerator by the denominator (^{a}/_{b} = a ÷ b). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. [5NF3] [MA2013] (5) 14: Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. [5NF4] [MA2013] (5) 15: Interpret multiplication as scaling (resizing), by: [5NF5] [MA2013] (5) 16: Solve realworld problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem. [5NF6] [MA2013] (5) 17: Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. (Students able to multiply fractions in general can develop strategies to divide fractions in general by reasoning about the relationship between multiplication and division. However, division of a fraction by a fraction is not a requirement at this grade.)
[5NF7] [MA2013] (5) 18: Convert among differentsized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multistep, realworld problems. [5MD1] [MA2013] (5) 19: Make a line plot to display a data set of measurements in fractions of a unit (^{1}/_{2}, ^{1}/_{4}, ^{1}/_{8}).
Use operations on fractions for this grade to solve problems involving information presented in line plots. [5MD2] [MA2013] (5) 20: Recognize volume as an attribute of solid figures, and understand concepts of volume measurement. [5MD3] [MA2013] (5) 21: Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units. [5MD4] [MA2013] (5) 22: Relate volume to the operations of multiplication and addition, and solve realworld and mathematical problems involving volume. [5MD5] [MA2013] (5) 23: Use a pair of perpendicular number lines, called axes, to define a coordinate system with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., xaxis and xcoordinate, yaxis and ycoordinate). [5G1] [MA2013] (5) 24: Represent realworld and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. [5G2] [MA2013] (5) 25: Understand that attributes belonging to a category of twodimensional figures also belong to all subcategories of that category. [5G3] [MA2013] (5) 26: Classify twodimensional figures in a hierarchy based on properties. [5G4]
Subject: Mathematics Title: Number and Operations Web Links
Description: This collection of Web links, reviewed and presented by Illuminations, offers teachers and students information about and practice in concepts related to arithmetic. Users can read the Illuminations Editorial Board's review of each Web site, or choose to link directly to the sites. Thinkfinity Partner: Illuminations Grade Span: K,1,2,3,4,5,6,7,8,9,10,11,12
Thinkfinity Interactive Games
Save to ALEX 
Share

Show Details
Title: Communicating about Mathematics Using Games: Playing Fraction Tracks
Description:
Mathematical games can foster mathematical communication as students explain and justify their moves to one another. In addition, games can motivate students and engage them in thinking about and applying concepts and skills. This eexample from Illuminations contains an interactive version of a game that can be used in the grades 35 classroom to support students' learning about fractions. eMath Investigations are selected eexamples from the electronic version of the Principles and Standards of School Mathematics (PSSM). The eexamples are part of the electronic version of the PSSM document. Given their interactive nature and focused discussion tied to the PSSM document, the eexamples are natural companions to the iMath investigations.
Standard(s): [MA2013] (3) 1: Interpret products of whole numbers, e.g., interpret 5 x 7 as the total number of objects in 5 groups of 7 objects each. [3OA1] [MA2013] (3) 2: Interpret wholenumber quotients of whole numbers, e.g., interpret 56 ÷ 8 as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. [3OA2] [MA2013] (3) 3: Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem. (See Appendix A, Table 2.) [3OA3] [MA2013] (3) 4: Determine the unknown whole number in a multiplication or division equation relating three whole numbers. [3OA4] [MA2013] (3) 5: Apply properties of operations as strategies to multiply and divide. (Students need not use formal terms for these properties.) [3OA5] [MA2013] (3) 6: Understand division as an unknownfactor problem. [3OA6] [MA2013] (3) 7: Fluently multiply and divide within 100, using strategies such as the relationship between multiplication and division (e.g., knowing that 8 x 5 = 40, one knows 40 ÷ 5 = 8) or properties of operations. By the end of Grade 3, know from memory all products of two onedigit numbers. [3OA7] [MA2013] (3) 8: Solve twostep word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. (This standard is limited to problems posed with whole numbers and having wholenumber answers; students should know how to perform operations in the conventional order when there are no parentheses to specify a particular order (Order of Operations).) [3OA8] [MA2013] (3) 9: Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. [3OA9] [MA2013] (3) 10: Use place value understanding to round whole numbers to the nearest 10 or 100. [3NBT1] [MA2013] (3) 11: Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction. [3NBT2] [MA2013] (3) 12: Multiply onedigit whole numbers by multiples of 10 in the range 10  90 (e.g., 9 x 80, 5 x 60) using strategies based on place value and properties of operations. [3NBT3] [MA2013] (3) 13: Understand a fraction ^{1}/_{b} as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction ^{a}/_{b} as the quantity formed by a parts and size ^{1}/_{b}. [3NF1] [MA2013] (3) 14: Understand a fraction as a number on the number line; represent fractions on a number line diagram. [3NF2] [MA2013] (3) 15: Explain equivalence of fractions in special cases, and compare fractions by reasoning about their size. [3NF3] [MA2013] (3) 16: Tell and write time to the nearest minute, and measure time intervals in minutes. Solve word problems involving addition and subtraction of time intervals in minutes, e.g., by representing the problem on a number line diagram. [3MD1] [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (3) 18: Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one and twostep "how many more" and "how many less" problems using information presented in scaled bar graphs. [3MD3] [MA2013] (3) 19: Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot where the horizontal scale is marked off in appropriate units — whole numbers, halves, or quarters. [3MD4] [MA2013] (3) 21: Measure areas by counting unit squares (square cm, square m, square in, square ft, and improvised units). [3MD6] [MA2013] (3) 22: Relate area to the operations of multiplication and addition. [3MD7] [MA2013] (3) 23: Solve realworld and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters. [3MD8] [MA2013] (3) 24: Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories. [3G1] [MA2013] (3) 25: Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. [3G2] [MA2013] (4) 1: Interpret a multiplication equation as a comparison, e.g., interpret 35 = 5 x 7 as a statement that 35 is 5 times as many as 7 and 7 times as many as 5. Represent verbal statements of multiplicative comparisons as multiplication equations. [4OA1] [MA2013] (4) 2: Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison. (See Appendix A, Table 2.) [4OA2] [MA2013] (4) 3: Solve multistep word problems posed with whole numbers and having wholenumber answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. [4OA3] [MA2013] (4) 4: Find all factor pairs for a whole number in the range 1100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1100 is a multiple of a given onedigit number. Determine whether a given whole number in the range 1100 is prime or composite. [4OA4] [MA2013] (4) 5: Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. [4OA5] [MA2013] (4) 6: Recognize that in a multidigit whole number, a digit in one place represents ten times what it represents in the place to its right. [4NBT1] [MA2013] (4) 7: Read and write multidigit whole numbers using baseten numerals, number names, and expanded form. Compare two multidigit numbers based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons. [4NBT2] [MA2013] (4) 8: Use place value understanding to round multidigit whole numbers to any place. [4NBT3] [MA2013] (4) 9: Fluently add and subtract multidigit whole numbers using the standard algorithm. [4NBT4] [MA2013] (4) 10: Multiply a whole number of up to four digits by a onedigit whole number, and multiply two twodigit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. [4NBT5] [MA2013] (4) 11: Find wholenumber quotients and remainders with up to fourdigit dividends and onedigit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. [4NBT6] [MA2013] (4) 12: Explain why a fraction ^{a}/_{b} is equivalent to a fraction ^{nxa}/_{nxb} by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions. [4NF1] [MA2013] (4) 13: Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators or by comparing to a benchmark fraction such as ^{1}/_{2}. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model. [4NF2] [MA2013] (4) 14: Understand a fraction ^{a}/_{b} with a > 1 as a sum of fractions ^{1}/_{b}. [4NF3] [MA2013] (4) 15: Apply and extend previous understandings of multiplication to multiply a fraction by a whole number. [4NF4] [MA2013] (4) 16: Express a fraction with denominator 10 as an equivalent fraction with denominator 100, and use this technique to add two fractions with respective denominators 10 and 100. (Students who can generate equivalent fractions can develop strategies for adding fractions with unlike denominators in general. But addition and subtraction with unlike denominators in general is not a requirement at this grade.) [4NF5] [MA2013] (4) 17: Use decimal notation for fractions with denominators 10 or 100. [4NF6] [MA2013] (4) 18: Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model. [4NF7] [MA2013] (4) 19: Know relative sizes of measurement units within one system of units, including km, m, cm; kg, g; lb, oz; l, ml; and hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a twocolumn table. [4MD1] [MA2013] (4) 20: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. [4MD2] [MA2013] (4) 21: Apply the area and perimeter formulas for rectangles in realworld and mathematical problems. [4MD3] [MA2013] (4) 22: Make a line plot to display a data set of measurements in fractions of a unit (^{1}/_{2}, ^{1}/_{4}, ^{1}/_{8}). Solve problems involving addition and subtraction of fractions by using information presented in line plots. [4MD4] [MA2013] (4) 23: Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement. [4MD5] [MA2013] (4) 24: Measure angles in wholenumber degrees using a protractor. Sketch angles of specified measure. [4MD6] [MA2013] (4) 25: Recognize angle measure as additive. When an angle is decomposed into nonoverlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in realworld or mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure. [4MD7] [MA2013] (4) 26: Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in twodimensional figures. [4G1] [MA2013] (4) 27: Classify twodimensional figures based on the presence or absence of parallel or perpendicular lines or the presence or absence of angles of a specified size. Recognize right triangles as a category, and identify right triangles. [4G2] [MA2013] (4) 28: Recognize a line of symmetry for a twodimensional figure as a line across the figure such that the figure can be folded along the line into matching parts. Identify linesymmetric figures and draw lines of symmetry. [4G3] [MA2013] (5) 1: Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. [5OA1] [MA2013] (5) 2: Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. [5OA2] [MA2013] (5) 3: Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. [5OA3] [MA2013] (5) 4: Recognize that in a multidigit number, a digit in one place represents 10 times as much as it represents in the place to its right and ^{1}/_{10} of what it represents in the place to its left. [5NBT1] [MA2013] (5) 5: Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use wholenumber exponents to denote powers of 10. [5NBT2] [MA2013] (5) 6: Read, write, and compare decimals to thousandths. [5NBT3] [MA2013] (5) 7: Use place value understanding to round decimals to any place. [5NBT4] [MA2013] (5) 8: Fluently multiply multidigit whole numbers using the standard algorithm. [5NBT5] [MA2013] (5) 9: Find wholenumber quotients of whole numbers with up to fourdigit dividends and twodigit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. [5NBT6] [MA2013] (5) 10: Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method, and explain the reasoning used. [5NBT7] [MA2013] (5) 11: Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. [5NF1] [MA2013] (5) 12: Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally, and assess the reasonableness of answers. [5NF2] [MA2013] (5) 13: Interpret a fraction as division of the numerator by the denominator (^{a}/_{b} = a ÷ b). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. [5NF3] [MA2013] (5) 14: Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. [5NF4] [MA2013] (5) 15: Interpret multiplication as scaling (resizing), by: [5NF5] [MA2013] (5) 16: Solve realworld problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem. [5NF6] [MA2013] (5) 17: Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions. (Students able to multiply fractions in general can develop strategies to divide fractions in general by reasoning about the relationship between multiplication and division. However, division of a fraction by a fraction is not a requirement at this grade.)
[5NF7] [MA2013] (5) 18: Convert among differentsized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multistep, realworld problems. [5MD1] [MA2013] (5) 19: Make a line plot to display a data set of measurements in fractions of a unit (^{1}/_{2}, ^{1}/_{4}, ^{1}/_{8}).
Use operations on fractions for this grade to solve problems involving information presented in line plots. [5MD2] [MA2013] (5) 20: Recognize volume as an attribute of solid figures, and understand concepts of volume measurement. [5MD3] [MA2013] (5) 21: Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units. [5MD4] [MA2013] (5) 22: Relate volume to the operations of multiplication and addition, and solve realworld and mathematical problems involving volume. [5MD5] [MA2013] (5) 23: Use a pair of perpendicular number lines, called axes, to define a coordinate system with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., xaxis and xcoordinate, yaxis and ycoordinate). [5G1] [MA2013] (5) 24: Represent realworld and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. [5G2] [MA2013] (5) 25: Understand that attributes belonging to a category of twodimensional figures also belong to all subcategories of that category. [5G3] [MA2013] (5) 26: Classify twodimensional figures in a hierarchy based on properties. [5G4]
Subject: Mathematics Title: Communicating about Mathematics Using Games: Playing Fraction Tracks
Description: Mathematical games can foster mathematical communication as students explain and justify their moves to one another. In addition, games can motivate students and engage them in thinking about and applying concepts and skills. This eexample from Illuminations contains an interactive version of a game that can be used in the grades 35 classroom to support students' learning about fractions. eMath Investigations are selected eexamples from the electronic version of the Principles and Standards of School Mathematics (PSSM). The eexamples are part of the electronic version of the PSSM document. Given their interactive nature and focused discussion tied to the PSSM document, the eexamples are natural companions to the iMath investigations. Thinkfinity Partner: Illuminations Grade Span: 3,4,5
Thinkfinity Learning Activities
Save to ALEX 
Share

Show Details
Title: Cubes
Description:
This student interactive, from Illuminations, helps students explore the volume of a box based on the amount of unit cubes that can fit inside of it. They are prompted to come up with a rule for determining the volume of a box when its width, depth, and height are known.
Standard(s): [MA2013] (3) 17: Measure and estimate liquid volumes and masses of objects using standard units of grams (g), kilograms (kg), and liters (l). (Excludes compound units such as cm^{3} and finding the geometric volume of a container.) Add, subtract, multiply, or divide to solve onestep word problems involving masses or volumes that are given in the same units, e.g., by using drawings (such as a beaker with a measurement scale) to represent the problem. (Excludes multiplicative comparison problems (problems involving notions of "times as much").) (See Appendix A, Table 2.) [3MD2] [MA2013] (4) 20: Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. [4MD2] [MA2013] (5) 20: Recognize volume as an attribute of solid figures, and understand concepts of volume measurement. [5MD3] [MA2013] (5) 21: Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units. [5MD4] [MA2013] (5) 22: Relate volume to the operations of multiplication and addition, and solve realworld and mathematical problems involving volume. [5MD5]
Subject: Mathematics Title: Cubes
Description: This student interactive, from Illuminations, helps students explore the volume of a box based on the amount of unit cubes that can fit inside of it. They are prompted to come up with a rule for determining the volume of a box when its width, depth, and height are known. Thinkfinity Partner: Illuminations Grade Span: 3,4,5

