ALEX Lesson Plans
Save to ALEX 
Share

Show Details
Title: Is there a relationship between your height and the length of your foot?
Description:
In this lesson, eighth grade students will collect data. They will use this data to analyze the relationship between the height of an individual and the length of his/her foot. Students will use a line of fit to make predictions for people of different heights.
Standard(s): [MA2013] (8) 15: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. [8F5]
Subject: Mathematics (8)
Title: Is there a relationship between your height and the length of your foot?
Description: In this lesson, eighth grade students will collect data. They will use this data to analyze the relationship between the height of an individual and the length of his/her foot. Students will use a line of fit to make predictions for people of different heights.
Save to ALEX 
Share

Show Details
Title: Incline Plane and the Crashing Marble
Description:
Students will measure the effects of the height of an inclined plane on the force a marble produces to move a plastic, foam, or paper cup across a table. Students will discover that the higher the incline plane, the more force produced by the marble, which moves the cup a greater distance. Students will also learn how to graph data and discover the appropriate graph to use for comparison.This lesson plan was created as a result of the Girls Engaged in Math and Science, GEMS Project funded by the Malone Family Foundation.
Standard(s): [S1] (8) 1: Identify steps within the scientific process. [S1] (8) 8: Identify Newton's three laws of motion. [S1] (8) 9: Describe how mechanical advantages of simple machines reduce the amount of force needed for work. [S1] (8) 10: Differentiate between potential and kinetic energy. [MA2013] (6) 20: Use variables to represent two quantities in a realworld problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. [6EE9] [MA2013] (7) 3: Use proportional relationships to solve multistep ratio and percent problems. [7RP3] [MA2013] (8) 7: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. [8EE5] [MA2013] (8) 8: Use similar triangles to explain why the slope m is the same between any two distinct points on a nonvertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b. [8EE6] [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 15: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. [8F5]
Subject: Mathematics (6  8), or Science (8)
Title: Incline Plane and the Crashing Marble
Description: Students will measure the effects of the height of an inclined plane on the force a marble produces to move a plastic, foam, or paper cup across a table. Students will discover that the higher the incline plane, the more force produced by the marble, which moves the cup a greater distance. Students will also learn how to graph data and discover the appropriate graph to use for comparison.This lesson plan was created as a result of the Girls Engaged in Math and Science, GEMS Project funded by the Malone Family Foundation.
Save to ALEX 
Share

Show Details
Title: Human slope
Description:
Students will participate in this discovery activity intended for them to uncover the role each variable plays in the graph of a line in the form y = mx + b. Students will actually demonstrate lines in slope intercept form on a life size graph. They will compare different graphs to see what effect adding negative signs and coefficients to the variables have on the graph. They will also analysis what happens to the graph when a constant is added or subtracted from the variable.This lesson plan was created as a result of the Girls Engaged in Math and Science, GEMS Project funded by the Malone Family Foundation.
Standard(s): [MA2013] (8) 15: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. [8F5] [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 8: Use similar triangles to explain why the slope m is the same between any two distinct points on a nonvertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b. [8EE6] [MA2013] (8) 7: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. [8EE5] [MA2013] (6) 11: Solve realworld and mathematical problems by graphing points in all four quadrants of the coordinate plane. Include use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate. [6NS8] [MA2013] AL1 (912) 31: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL1 (912) 36: Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. [FBF3] [MA2013] AL1 (912) 31: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL1 (912) 36: Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. [FBF3]
Subject: Mathematics (6  12)
Title: Human slope
Description: Students will participate in this discovery activity intended for them to uncover the role each variable plays in the graph of a line in the form y = mx + b. Students will actually demonstrate lines in slope intercept form on a life size graph. They will compare different graphs to see what effect adding negative signs and coefficients to the variables have on the graph. They will also analysis what happens to the graph when a constant is added or subtracted from the variable.This lesson plan was created as a result of the Girls Engaged in Math and Science, GEMS Project funded by the Malone Family Foundation.
Save to ALEX 
Share

Show Details
Title: We Love to Graph!
Description:
The students will review plotting points on a Coordinate Plane through an interactive website. They will also practice changing the slope and yintercept on the website in order to see the effects. After this review, the students will work in groups to plot points and use slope to spell out letters of the alphabet. The students will then unscramble the letters to spell out "We Love to Graph!"This lesson plan was created as a result of the Girls Engaged in Math and Science, GEMS Project, funded by the Malone Family Foundation.
Standard(s): [TC2] CA2 (912) 11: Critique digital content for validity, accuracy, bias, currency, and relevance. [MA2013] (8) 7: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. [8EE5] [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 15: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. [8F5]
Subject: Mathematics (8), or Technology Education (9  12)
Title: We Love to Graph!
Description: The students will review plotting points on a Coordinate Plane through an interactive website. They will also practice changing the slope and yintercept on the website in order to see the effects. After this review, the students will work in groups to plot points and use slope to spell out letters of the alphabet. The students will then unscramble the letters to spell out "We Love to Graph!"This lesson plan was created as a result of the Girls Engaged in Math and Science, GEMS Project, funded by the Malone Family Foundation.
Save to ALEX 
Share

Show Details
Title: Heads Up!
Description:
The lesson is a handson project. Students will work in pairs to gather various measurements, organizing the data into a provided chart. The measurements will be used to review, reinforce, and introduce skills such as measures of central tendency, coordinate graphing, and various ways of representing data (i.e., stemandleaf plots, boxandwhisker plots, frequency tables, etc.).
Standard(s): [MA2013] (7) 17: Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences. [7SP1] [MA2013] (8) 7: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. [8EE5] [MA2013] (8) 8: Use similar triangles to explain why the slope m is the same between any two distinct points on a nonvertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b. [8EE6] [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 15: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. [8F5]
Subject: Mathematics (7  8)
Title: Heads Up!
Description: The lesson is a handson project. Students will work in pairs to gather various measurements, organizing the data into a provided chart. The measurements will be used to review, reinforce, and introduce skills such as measures of central tendency, coordinate graphing, and various ways of representing data (i.e., stemandleaf plots, boxandwhisker plots, frequency tables, etc.).
Save to ALEX 
Share

Show Details
Title: What is the slope of the stairs in front of the school?
Description:
The purpose of this lesson is to help students apply the mathematical definition of slope to a concrete example. The students will learn to make the appropriate measurements and apply the formula to calculate the slope of the stairs experimentally.
Standard(s): [MA2013] (8) 7: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. [8EE5] [MA2013] (8) 8: Use similar triangles to explain why the slope m is the same between any two distinct points on a nonvertical line in the coordinate plane; derive the equation y = mx for a line through the origin and the equation y = mx + b for a line intercepting the vertical axis at b. [8EE6] [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 15: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. [8F5] [MA2013] AL1 (912) 30: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] AL1 (912) 37: Distinguish between situations that can be modeled with linear functions and with exponential functions. [FLE1] [MA2013] AL1 (912) 38: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). [FLE2] [MA2013] AL1 (912) 46: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. [SID7] [MA2013] ALC (912) 1: Create algebraic models for applicationbased problems by developing and solving equations and inequalities, including those involving direct, inverse, and joint variation. (Alabama) [MA2013] PRE (912) 17: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] GEO (912) 31: Prove the slope criteria for parallel and perpendicular lines, and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point). [GGPE5]
Subject: Mathematics (8  12)
Title: What is the slope of the stairs in front of the school?
Description: The purpose of this lesson is to help students apply the mathematical definition of slope to a concrete example. The students will learn to make the appropriate measurements and apply the formula to calculate the slope of the stairs experimentally.
Thinkfinity Lesson Plans
Save to ALEX 
Share

Show Details
Title: Finding Our Top Speed
Description:
This Illuminations lesson sets the stage for a discussion of travel in the solar system. By considering a realworld, handson activity, students develop their understanding of time and distance. The mathematics necessary for the lesson relate to measuring time and distance as well as graphing to portray the data collected.
Standard(s): [S1] (6) 11: Describe units used to measure distance in space, including astronomical units and light years. [MA2013] (8) 7: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. [8EE5] [MA2013] (8) 13: Interpret the equation y = mx + b as defining a linear function whose graph is a straight line; give examples of functions that are not linear. [8F3] [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 15: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. [8F5] [MA2013] (8) 25: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. [8SP1] [MA2013] (8) 26: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. [8SP2] [MA2013] AL1 (912) 4: Use units as a way to understand problems and to guide the solution of multistep problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. [NQ1] [MA2013] AL1 (912) 5: Define appropriate quantities for the purpose of descriptive modeling. [NQ2] [MA2013] AL1 (912) 13: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] AL1 (912) 30: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] AL1 (912) 31: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 38: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). [FLE2] [MA2013] AL1 (912) 40: Interpret the parameters in a linear or exponential function in terms of a context. [FLE5] [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6] [MA2013] AL1 (912) 46: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. [SID7]
Subject: Mathematics,Science Title: Finding Our Top Speed
Description: This Illuminations lesson sets the stage for a discussion of travel in the solar system. By considering a realworld, handson activity, students develop their understanding of time and distance. The mathematics necessary for the lesson relate to measuring time and distance as well as graphing to portray the data collected. Thinkfinity Partner: Illuminations Grade Span: 6,7,8
Save to ALEX 
Share

Show Details
Title: Supreme Court Handshake
Description:
In this lesson, one of a multipart unit from Illuminations, students explore the handshake problem, a classic problem in mathematics that asks, How many handshakes occur when n people shake hands with each other? Groups work to determine how many handshakes take place among the nine Supreme Court justices, and then generalize the problem to determine the number of handshakes in any size group. Students explore the problem using a verbal description, a table, a graph, a picture and an algebraic formula.
Standard(s): [MA2013] (8) 12: Compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). [8F2] [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 15: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. [8F5]
Subject: Mathematics Title: Supreme Court Handshake
Description: In this lesson, one of a multipart unit from Illuminations, students explore the handshake problem, a classic problem in mathematics that asks, How many handshakes occur when n people shake hands with each other? Groups work to determine how many handshakes take place among the nine Supreme Court justices, and then generalize the problem to determine the number of handshakes in any size group. Students explore the problem using a verbal description, a table, a graph, a picture and an algebraic formula. Thinkfinity Partner: Illuminations Grade Span: 6,7,8
Save to ALEX 
Share

Show Details
Title: Building Bridges
Description:
In this lesson, from Illuminations, students attempt to make a transition from arithmetical to algebraic thinking by extending from problems that have singlesolution responses. Values organized into tables and graphs are used to move toward symbolic representations. Problem situations involving linear, quadratic, and exponential models are employed.
Standard(s): [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 15: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. [8F5] [MA2013] (8) 25: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. [8SP1] [MA2013] (8) 28: Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a twoway table. Construct and interpret a twoway table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. [8SP4] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 31: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 37: Distinguish between situations that can be modeled with linear functions and with exponential functions. [FLE1] [MA2013] AL1 (912) 38: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). [FLE2] [MA2013] AL1 (912) 39: Observe, using graphs and tables, that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. [FLE3] [MA2013] AL1 (912) 40: Interpret the parameters in a linear or exponential function in terms of a context. [FLE5] [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6]
Subject: Mathematics,Professional Development Title: Building Bridges
Description: In this lesson, from Illuminations, students attempt to make a transition from arithmetical to algebraic thinking by extending from problems that have singlesolution responses. Values organized into tables and graphs are used to move toward symbolic representations. Problem situations involving linear, quadratic, and exponential models are employed. Thinkfinity Partner: Illuminations Grade Span: 6,7,8
Save to ALEX 
Share

Show Details
Title: Gallery Walk
Description:
In this lesson, one of a multipart unit from Illuminations, students view the work of other students in the class and explain their own work. Students move from graph to graph during this time and, without any talking, view the work of their classmates. While on their Gallery Walk, the students think about the data their classmates plotted and whether or not the information accompanying each graph seems appropriate. Each pair of students then stands next to their own work and explains one of the graphs.
Standard(s): [MA2013] (8) 7: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. [8EE5] [MA2013] (8) 11: Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in Grade 8.) [8F1] [MA2013] (8) 12: Compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). [8F2] [MA2013] (8) 13: Interpret the equation y = mx + b as defining a linear function whose graph is a straight line; give examples of functions that are not linear. [8F3] [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 15: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. [8F5] [MA2013] (8) 25: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. [8SP1] [MA2013] (8) 26: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. [8SP2] [MA2013] (8) 27: Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. [8SP3] [MA2013] AL1 (912) 13: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL1 (912) 22: Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). [AREI10] [MA2013] AL1 (912) 25: Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x). [FIF1] [MA2013] AL1 (912) 26: Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. [FIF2] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] AL1 (912) 30: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] AL1 (912) 31: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 37: Distinguish between situations that can be modeled with linear functions and with exponential functions. [FLE1] [MA2013] AL1 (912) 38: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). [FLE2] [MA2013] AL1 (912) 40: Interpret the parameters in a linear or exponential function in terms of a context. [FLE5] [MA2013] AL1 (912) 46: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. [SID7] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] AL2 (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL2 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] ALT (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] PRE (912) 16: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. (Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Determine odd, even, neither.)* [FIF4] (Alabama) [MA2013] ALT (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] PRE (912) 17: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] ALT (912) 33: Write a function that describes a relationship between two quantities.* [FBF1]
Subject: Mathematics Title: Gallery Walk
Description: In this lesson, one of a multipart unit from Illuminations, students view the work of other students in the class and explain their own work. Students move from graph to graph during this time and, without any talking, view the work of their classmates. While on their Gallery Walk, the students think about the data their classmates plotted and whether or not the information accompanying each graph seems appropriate. Each pair of students then stands next to their own work and explains one of the graphs. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: Graphing What
Description:
This reproducible activity sheet, from an Illuminations lesson, is used by students to record independent and dependent variables as well as the function and symbolic function rule for a set of graphs.
Standard(s): [MA2013] (6) 17: Use variables to represent numbers, and write expressions when solving a realworld or mathematical problem; understand that a variable can represent an unknown number or, depending on the purpose at hand, any number in a specified set. [6EE6] [MA2013] (6) 20: Use variables to represent two quantities in a realworld problem that change in relationship to one another; write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. [6EE9] [MA2013] (7) 10: Use variables to represent quantities in a realworld or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. [7EE4] [MA2013] (8) 7: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. [8EE5] [MA2013] (8) 11: Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in Grade 8.) [8F1] [MA2013] (8) 13: Interpret the equation y = mx + b as defining a linear function whose graph is a straight line; give examples of functions that are not linear. [8F3] [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 15: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. [8F5] [MA2013] AL1 (912) 13: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL1 (912) 25: Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x). [FIF1] [MA2013] AL1 (912) 26: Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. [FIF2] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] AL1 (912) 30: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] AL1 (912) 31: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 37: Distinguish between situations that can be modeled with linear functions and with exponential functions. [FLE1] [MA2013] AL1 (912) 38: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). [FLE2] [MA2013] AL1 (912) 39: Observe, using graphs and tables, that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. [FLE3] [MA2013] AL2 (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL2 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] AL2 (912) 30: Graph functions expressed symbolically, and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] ALT (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] PRE (912) 16: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. (Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Determine odd, even, neither.)* [FIF4] (Alabama) [MA2013] ALT (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] ALT (912) 30: Graph functions expressed symbolically, and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] ALT (912) 33: Write a function that describes a relationship between two quantities.* [FBF1]
Subject: Mathematics Title: Graphing What
Description: This reproducible activity sheet, from an Illuminations lesson, is used by students to record independent and dependent variables as well as the function and symbolic function rule for a set of graphs. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: Exploring Linear Data
Description:
In this lesson, from Illuminations, students model linear data in a variety of settings. Students can work alone or in small groups to construct scatterplots, interpret data points and trends, and investigate the notion of line of best fit.
Standard(s): [S1] (8) 1: Identify steps within the scientific process. [MA2013] (8) 7: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. [8EE5] [MA2013] (8) 12: Compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). [8F2] [MA2013] (8) 13: Interpret the equation y = mx + b as defining a linear function whose graph is a straight line; give examples of functions that are not linear. [8F3] [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 15: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. [8F5] [MA2013] (8) 25: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. [8SP1] [MA2013] (8) 26: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. [8SP2] [MA2013] (8) 27: Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. [8SP3] [MA2013] (8) 28: Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a twoway table. Construct and interpret a twoway table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. [8SP4] [MA2013] AL1 (912) 13: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL1 (912) 14: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities and interpret solutions as viable or nonviable options in a modeling context. [ACED3] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] AL1 (912) 30: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] AL1 (912) 31: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 37: Distinguish between situations that can be modeled with linear functions and with exponential functions. [FLE1] [MA2013] AL1 (912) 40: Interpret the parameters in a linear or exponential function in terms of a context. [FLE5] [MA2013] AL1 (912) 46: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. [SID7] [MA2013] PRE (912) 42: Compute (using technology) and interpret the correlation coefficient of a linear fit. [SID8] [MA2013] ALC (912) 1: Create algebraic models for applicationbased problems by developing and solving equations and inequalities, including those involving direct, inverse, and joint variation. (Alabama) [MA2013] ALC (912) 7: Use analytical, numerical, and graphical methods to make financial and economic decisions, including those involving banking and investments, insurance, personal budgets, credit purchases, recreation, and deceptive and fraudulent pricing and advertising. (Alabama) [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] AL2 (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL2 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] ALT (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] PRE (912) 16: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. (Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Determine odd, even, neither.)* [FIF4] (Alabama) [MA2013] ALT (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] PRE (912) 17: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] ALT (912) 33: Write a function that describes a relationship between two quantities.* [FBF1]
Subject: Mathematics Title: Exploring Linear Data
Description: In this lesson, from Illuminations, students model linear data in a variety of settings. Students can work alone or in small groups to construct scatterplots, interpret data points and trends, and investigate the notion of line of best fit. Thinkfinity Partner: Illuminations Grade Span: 6,7,8,9,10,11,12
Web Resources
Lesson Plans
Save to ALEX 
Share

Show Details
Title: Pedal Power
Description:
In this lesson, students investigate slope as a rate of change. Students compare, contrast, and make conjectures based on distancetime graphs for three bicyclists climbing to the top of a mountain.
Standard(s): [MA2013] (8) 7: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. [8EE5] [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 15: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. [8F5] [MA2013] AL1 (912) 46: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. [SID7]
Pedal Power
http://illuminations...
In this lesson, students investigate slope as a rate of change. Students compare, contrast, and make conjectures based on distancetime graphs for three bicyclists climbing to the top of a mountain.

