ALEX Lesson Plans
Save to ALEX 
Share

Show Details
Title: Proofs into Practice: The Pythagorean Theorem in the Real World
Description:
The introduction of this lesson has students verifying the famous Pythagorean Theorem with a handson proof. Students will then apply the Theorem in one of two ways: by solving for the side lengths of a right triangle and by determining whether three side lengths could possibly form a right triangle. Finally, students will choose one of two reallife applicataions to explore, using the Pythagorean Theorem.
Standard(s): [MA2013] (8) 22: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in realworld and mathematical problems in two and three dimensions. [8G7] [MA2013] (8) 21: Explain a proof of the Pythagorean Theorem and its converse. [8G6] [MA2013] (8) 23: Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. [8G8] [MA2013] ALC (912) 8: Determine missing information in an applicationbased situation using properties of right triangles, including trigonometric ratios and the Pythagorean Theorem. (Alabama) [MA2013] GEO (912) 17: Prove theorems about triangles. Theorems include a line parallel to one side of a triangle divides the other two proportionally, and conversely; and the Pythagorean Theorem proved using triangle similarity. [GSRT4] [MA2013] GEO (912) 21: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.* [GSRT8]
Subject: Mathematics (8  12)
Title: Proofs into Practice: The Pythagorean Theorem in the Real World
Description: The introduction of this lesson has students verifying the famous Pythagorean Theorem with a handson proof. Students will then apply the Theorem in one of two ways: by solving for the side lengths of a right triangle and by determining whether three side lengths could possibly form a right triangle. Finally, students will choose one of two reallife applicataions to explore, using the Pythagorean Theorem.
Save to ALEX 
Share

Show Details
Title: Land Surveying ProjectEnhancing mathematics in the career/technical classroom and providing relevance in the mathematics classroom.
Description:
This project resulted from of the collaboration of a computer aided drafting teacher, Chris Bond, and a math teacher, Lee Cable, (HewittTrussville High School) to provide higher math expectations in CT and real life application in mathematics.
In this handson and technology based project, CT students will learn the basics of civil engineering in land surveying while applying algebraic and geometric concepts. The current technology used by survey crews, for example AutoCAD, will be utilized and applied by students. With assistance from a local civil engineering firm, students will record length and angle measurements of an assigned area and calculate unknown measures using math concepts that include solving general and right triangles, setting up and solving proportions, determining scale, and using the Law of Cosines. A topographical map will then be plotted using AutoCAD and a presentation made to the engineering firm for grading and feedback. The embedded math will be cotaught with a math teacher using the real world data to make the topics relevant. In the math classroom, the math teacher will use land surveying problems designed in this project to show students how math concepts are used in realworld applications.
Standard(s): [STM] STM2 (912) 9: Apply correct drafting techniques using computeraided design (CAD) programs to produce plans, diagrams, and working drawings for the construction of models, prototypes, and final products. [MA2013] GEO (912) 21: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.* [GSRT8] [MA2013] GEO (912) 23: (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and nonright triangles (e.g., surveying problems, resultant forces).
[GSRT11]
Subject: Mathematics (9  12), or Science, Technology, Engineering, and Mathematics (9  12)
Title: Land Surveying ProjectEnhancing mathematics in the career/technical classroom and providing relevance in the mathematics classroom.
Description: This project resulted from of the collaboration of a computer aided drafting teacher, Chris Bond, and a math teacher, Lee Cable, (HewittTrussville High School) to provide higher math expectations in CT and real life application in mathematics.
In this handson and technology based project, CT students will learn the basics of civil engineering in land surveying while applying algebraic and geometric concepts. The current technology used by survey crews, for example AutoCAD, will be utilized and applied by students. With assistance from a local civil engineering firm, students will record length and angle measurements of an assigned area and calculate unknown measures using math concepts that include solving general and right triangles, setting up and solving proportions, determining scale, and using the Law of Cosines. A topographical map will then be plotted using AutoCAD and a presentation made to the engineering firm for grading and feedback. The embedded math will be cotaught with a math teacher using the real world data to make the topics relevant. In the math classroom, the math teacher will use land surveying problems designed in this project to show students how math concepts are used in realworld applications.
Save to ALEX 
Share

Show Details
Title: The Clock TowerEnhancing mathematics in the career/technical classroom and providing relevance in the mathematics classroom.
Description:
This project resulted from the collaboration of a computer aided drafting teacher (preengineering), Chris Bond, and a math teacher, Lee Cable, (HewittTrussville High School) to provide higher math expectations in CT and real life application in mathematics.
As a handson, technology based project this activity demonstrates use of the Pythagorean Theorem, Sine, Cosine and Tangent to find unknown heights of objects and can be adapted for use by the computer aided drafting or mathematics teacher. Clinometers are used as a surveying tool and AutoCAD is used as a drawing tool. Students use a clinometer and a ruler or a tape measure to find and then record the length and angle measurements of a right triangle to determine unknowns. This information is then used to find unknown lengths and angles and to then create a drawing in AutoCAD. Proportion and scale will be used to draw a scale drawing of the clock tower at the new HewittTrussville High School. In the mathematics classroom, students will produce scale drawings using graph paper instead of AutoCAD. This lesson will need to be adapted for use by other schools by selecting a different building structure for measure.
Standard(s): [AC] K02 (912) 2: Demonstrate the safe handling of drafting design tools according to classroom and environmental practices, procedures, and regulations. [AC] K02 (912) 3: Demonstrate mathematic skills related to drafting design, including basic fractions, scale reading, and conversion of customary to metric and metric to customary measurements. [AC] K02 (912) 8: Utilize CAD software to generate a multiview drawing using appropriate file management techniques, basic drawing commands, and basic dimensioning techniques. [AC] K02 (912) 2: Demonstrate the safe handling of drafting design tools according to classroom and environmental practices, procedures, and regulations. [AC] K02 (912) 3: Demonstrate mathematic skills related to drafting design, including basic fractions, scale reading, and conversion of customary to metric and metric to customary measurements. [AC] K02 (912) 8: Utilize CAD software to generate a multiview drawing using appropriate file management techniques, basic drawing commands, and basic dimensioning techniques. [MA2013] ALC (912) 8: Determine missing information in an applicationbased situation using properties of right triangles, including trigonometric ratios and the Pythagorean Theorem. (Alabama) [MA2013] GEO (912) 21: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.* [GSRT8]
Subject: Architecture and Construction (9  12), or Mathematics (9  12)
Title: The Clock TowerEnhancing mathematics in the career/technical classroom and providing relevance in the mathematics classroom.
Description: This project resulted from the collaboration of a computer aided drafting teacher (preengineering), Chris Bond, and a math teacher, Lee Cable, (HewittTrussville High School) to provide higher math expectations in CT and real life application in mathematics.
As a handson, technology based project this activity demonstrates use of the Pythagorean Theorem, Sine, Cosine and Tangent to find unknown heights of objects and can be adapted for use by the computer aided drafting or mathematics teacher. Clinometers are used as a surveying tool and AutoCAD is used as a drawing tool. Students use a clinometer and a ruler or a tape measure to find and then record the length and angle measurements of a right triangle to determine unknowns. This information is then used to find unknown lengths and angles and to then create a drawing in AutoCAD. Proportion and scale will be used to draw a scale drawing of the clock tower at the new HewittTrussville High School. In the mathematics classroom, students will produce scale drawings using graph paper instead of AutoCAD. This lesson will need to be adapted for use by other schools by selecting a different building structure for measure.
Save to ALEX 
Share

Show Details
Title: Geometric Mean and Indirect Measurement
Description:
In this inquirybased lesson, students will work in groups to gather measurements needed to approximate the height of a building. Students will discover how geometric mean can be used to find the lengths of missing sides of right triangles.
This lesson plan was created by exemplary Alabama Math Teachers through the AMSTI project.
Standard(s): [MA2013] GEO (912) 17: Prove theorems about triangles. Theorems include a line parallel to one side of a triangle divides the other two proportionally, and conversely; and the Pythagorean Theorem proved using triangle similarity. [GSRT4] [MA2013] GEO (912) 21: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.* [GSRT8]
Subject: Mathematics (9  12)
Title: Geometric Mean and Indirect Measurement
Description: In this inquirybased lesson, students will work in groups to gather measurements needed to approximate the height of a building. Students will discover how geometric mean can be used to find the lengths of missing sides of right triangles.
This lesson plan was created by exemplary Alabama Math Teachers through the AMSTI project.
Save to ALEX 
Share

Show Details
Title: I Can Determine The Height Of A Rocket!
Description:
The lesson is intended to give students a fun realworld experience in applying their math skills. They will use trigonometric ratios to calculate heights of tall structures. They will also use the Internet to convert their calculations from standard to metric units and visa versa.
Standard(s): [TC2] CA2 (912) 11: Critique digital content for validity, accuracy, bias, currency, and relevance. [MA2013] AL1 (912) 4: Use units as a way to understand problems and to guide the solution of multistep problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. [NQ1] [MA2013] AL1 (912) 5: Define appropriate quantities for the purpose of descriptive modeling. [NQ2] [MA2013] AL1 (912) 6: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. [NQ3] [MA2013] ALC (912) 8: Determine missing information in an applicationbased situation using properties of right triangles, including trigonometric ratios and the Pythagorean Theorem. (Alabama) [MA2013] ALT (912) 39: Define the six trigonometric functions using ratios of the sides of a right triangle, coordinates on the unit circle, and the reciprocal of other functions. (Alabama) [MA2013] GEO (912) 15: Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. [GSRT2] [MA2013] GEO (912) 18: Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. [GSRT5] [MA2013] GEO (912) 19: Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle leading to definitions of trigonometric ratios for acute angles. [GSRT6] [MA2013] GEO (912) 21: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.* [GSRT8] [MA2013] GEO (912) 39: Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).* [GMG1]
Subject: Mathematics (9  12), or Technology Education (9  12)
Title: I Can Determine The Height Of A Rocket!
Description: The lesson is intended to give students a fun realworld experience in applying their math skills. They will use trigonometric ratios to calculate heights of tall structures. They will also use the Internet to convert their calculations from standard to metric units and visa versa.
Save to ALEX 
Share

Show Details
Title: How tall is the school's flagpole?
Description:
The purpose of this lesson is to help students apply math concepts concerning similar triangles and trigonometric functions to real life situations. The students learn how to take these concepts and use them to find measurements of objects that they are unable to measure in conventional ways.
Standard(s): [MA2013] GEO (912) 21: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.* [GSRT8] [MA2013] GEO (912) 18: Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. [GSRT5] [MA2013] GEO (912) 19: Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle leading to definitions of trigonometric ratios for acute angles. [GSRT6] [MA2013] GEO (912) 16: Use the properties of similarity transformations to establish the angleangle (AA) criterion for two triangles to be similar. [GSRT3] [MA2013] ALC (912) 10: Critique measurements in terms of precision, accuracy, and approximate error. (Alabama) [MA2013] ALC (912) 8: Determine missing information in an applicationbased situation using properties of right triangles, including trigonometric ratios and the Pythagorean Theorem. (Alabama)
Subject: Mathematics (9  12)
Title: How tall is the school's flagpole?
Description: The purpose of this lesson is to help students apply math concepts concerning similar triangles and trigonometric functions to real life situations. The students learn how to take these concepts and use them to find measurements of objects that they are unable to measure in conventional ways.
Web Resources
Podcasts
Save to ALEX 
Share

Show Details
Title: The Pythagorean Theorem TV
Description:
This website shows videos to help students and teachers understand the Pythagorean Theorem.
Standard(s): [MA2013] (8) 21: Explain a proof of the Pythagorean Theorem and its converse. [8G6] [MA2013] (8) 22: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in realworld and mathematical problems in two and three dimensions. [8G7] [MA2013] (8) 23: Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. [8G8] [MA2013] GEO (912) 17: Prove theorems about triangles. Theorems include a line parallel to one side of a triangle divides the other two proportionally, and conversely; and the Pythagorean Theorem proved using triangle similarity. [GSRT4] [MA2013] GEO (912) 21: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.* [GSRT8] [MA2013] GEO (912) 29: Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. [GGPE1] [MA2013] GEO (912) 30: Use coordinates to prove simple geometric theorems algebraically. [GGPE4] [MA2013] ALC (912) 8: Determine missing information in an applicationbased situation using properties of right triangles, including trigonometric ratios and the Pythagorean Theorem. (Alabama) [MA2013] MI1 (912) 10: Determine the mathematical impact of the ancient Greeks, including Archimedes, Eratosthenes, Euclid, Hypatia, Pythagoras, and the Pythagorean Society. (Alabama)
The Pythagorean Theorem TV
http://www.mathtv.co...
This website shows videos to help students and teachers understand the Pythagorean Theorem.
Save to ALEX 
Share

Show Details
Title: Pythagorean Theorem Rap Song
Description:
This video puts the Pythagorean theorem in realworld terms, helping students visualize examples in which the formula comes into play. The professionally produced music and video is highly engaging for students. For teachers, there are links to song lyrics, activities, and questions. Many Flocabulary videos are only accessible through a paid subscription. *This particular video is available for free and without the need for an account signup.
Standard(s): [MA2013] (8) 22: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in realworld and mathematical problems in two and three dimensions. [8G7] [MA2013] GEO (912) 21: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.* [GSRT8] [MA2013] ALC (912) 8: Determine missing information in an applicationbased situation using properties of right triangles, including trigonometric ratios and the Pythagorean Theorem. (Alabama) [MA2013] MI1 (912) 10: Determine the mathematical impact of the ancient Greeks, including Archimedes, Eratosthenes, Euclid, Hypatia, Pythagoras, and the Pythagorean Society. (Alabama)
Pythagorean Theorem Rap Song
http://www.flocabula...
This video puts the Pythagorean theorem in realworld terms, helping students visualize examples in which the formula comes into play. The professionally produced music and video is highly engaging for students. For teachers, there are links to song lyrics, activities, and questions. Many Flocabulary videos are only accessible through a paid subscription. *This particular video is available for free and without the need for an account signup.
Interactives/Games
Save to ALEX 
Share

Show Details
Title: Geometry StepbyStep
Description:
This site provides a mix of sound, science, and Incan history in order to raise students' interest in Euclidean geometry. Visitors will find geometry problems, proofs, quizzes, puzzles, quotations, visual displays, "scientific speculation", and more.
Standard(s): [MA2013] GEO (912) 1: Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment based on the undefined notions of point, line, distance along a line, and distance around a circular arc. [GCO1] [MA2013] GEO (912) 5: Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another. [GCO5] [MA2013] GEO (912) 7: Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. [GCO7] [MA2013] GEO (912) 8: Explain how the criteria for triangle congruence, anglesideangle (ASA), sideangleside (SAS), and sidesideside (SSS), follow from the definition of congruence in terms of rigid motions. [GCO8] [MA2013] GEO (912) 9: Prove theorems about lines and angles. Theorems include vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; and points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints. [GCO9] [MA2013] GEO (912) 10: Prove theorems about triangles. Theorems include measures of interior angles of a triangle sum to 180^{o}, base angles of isosceles triangles are congruent, the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length, and the medians of a triangle meet at a point. [GCO10] [MA2013] GEO (912) 11: Prove theorems about parallelograms. Theorems include opposite sides are congruent, opposite angles are congruent; the diagonals of a parallelogram bisect each other; and conversely, rectangles are parallelograms with congruent diagonals. [GCO11] [MA2013] GEO (912) 12: Make formal geometric constructions with a variety of tools and methods such as compass and straightedge, string, reflective devices, paper folding, and dynamic geometric software. Constructions include copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line. [GCO12] [MA2013] GEO (912) 13: Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. [GCO13] [MA2013] GEO (912) 16: Use the properties of similarity transformations to establish the angleangle (AA) criterion for two triangles to be similar. [GSRT3] [MA2013] GEO (912) 17: Prove theorems about triangles. Theorems include a line parallel to one side of a triangle divides the other two proportionally, and conversely; and the Pythagorean Theorem proved using triangle similarity. [GSRT4] [MA2013] GEO (912) 18: Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. [GSRT5] [MA2013] GEO (912) 19: Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle leading to definitions of trigonometric ratios for acute angles. [GSRT6] [MA2013] GEO (912) 20: Explain and use the relationship between the sine and cosine of complementary angles. [GSRT7] [MA2013] GEO (912) 21: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.* [GSRT8] [MA2013] GEO (912) 22: (+) Prove the Law of Sines and the Law of Cosines and use them to solve problems. [GSRT10] [MA2013] GEO (912) 23: (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and nonright triangles (e.g., surveying problems, resultant forces).
[GSRT11] [MA2013] GEO (912) 24: Prove that all circles are similar. [GC1] [MA2013] GEO (912) 25: Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle. [GC2] [MA2013] GEO (912) 26: Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle. [GC3] [MA2013] GEO (912) 27: (+) Construct a tangent line from a point outside a given circle to the circle. [GC4] [MA2013] GEO (912) 28: Derive, using similarity, the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. [GC5] [MA2013] GEO (912) 29: Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. [GGPE1] [MA2013] GEO (912) 35: Give an informal argument for the formulas for the circumference of a circle; area of a circle; and volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments. [GGMD1] [MA2013] GEO (912) 37: Determine the relationship between surface areas of similar figures and volumes of similar figures. (Alabama)
Geometry StepbyStep
http://agutie.homest...
This site provides a mix of sound, science, and Incan history in order to raise students' interest in Euclidean geometry. Visitors will find geometry problems, proofs, quizzes, puzzles, quotations, visual displays, "scientific speculation", and more.
Learning Activities
Save to ALEX 
Share

Show Details
Title: Geometry StepbyStep
Description:
This site provides a mix of sound, science, and Incan history in order to raise students' interest in Euclidean geometry. Visitors will find geometry problems, proofs, quizzes, puzzles, quotations, visual displays, "scientific speculation", and more.
Standard(s): [MA2013] GEO (912) 1: Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment based on the undefined notions of point, line, distance along a line, and distance around a circular arc. [GCO1] [MA2013] GEO (912) 5: Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another. [GCO5] [MA2013] GEO (912) 7: Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. [GCO7] [MA2013] GEO (912) 8: Explain how the criteria for triangle congruence, anglesideangle (ASA), sideangleside (SAS), and sidesideside (SSS), follow from the definition of congruence in terms of rigid motions. [GCO8] [MA2013] GEO (912) 9: Prove theorems about lines and angles. Theorems include vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; and points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints. [GCO9] [MA2013] GEO (912) 10: Prove theorems about triangles. Theorems include measures of interior angles of a triangle sum to 180^{o}, base angles of isosceles triangles are congruent, the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length, and the medians of a triangle meet at a point. [GCO10] [MA2013] GEO (912) 11: Prove theorems about parallelograms. Theorems include opposite sides are congruent, opposite angles are congruent; the diagonals of a parallelogram bisect each other; and conversely, rectangles are parallelograms with congruent diagonals. [GCO11] [MA2013] GEO (912) 12: Make formal geometric constructions with a variety of tools and methods such as compass and straightedge, string, reflective devices, paper folding, and dynamic geometric software. Constructions include copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line. [GCO12] [MA2013] GEO (912) 13: Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. [GCO13] [MA2013] GEO (912) 16: Use the properties of similarity transformations to establish the angleangle (AA) criterion for two triangles to be similar. [GSRT3] [MA2013] GEO (912) 17: Prove theorems about triangles. Theorems include a line parallel to one side of a triangle divides the other two proportionally, and conversely; and the Pythagorean Theorem proved using triangle similarity. [GSRT4] [MA2013] GEO (912) 18: Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. [GSRT5] [MA2013] GEO (912) 19: Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle leading to definitions of trigonometric ratios for acute angles. [GSRT6] [MA2013] GEO (912) 20: Explain and use the relationship between the sine and cosine of complementary angles. [GSRT7] [MA2013] GEO (912) 21: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.* [GSRT8] [MA2013] GEO (912) 22: (+) Prove the Law of Sines and the Law of Cosines and use them to solve problems. [GSRT10] [MA2013] GEO (912) 23: (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and nonright triangles (e.g., surveying problems, resultant forces).
[GSRT11] [MA2013] GEO (912) 24: Prove that all circles are similar. [GC1] [MA2013] GEO (912) 25: Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle. [GC2] [MA2013] GEO (912) 26: Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle. [GC3] [MA2013] GEO (912) 27: (+) Construct a tangent line from a point outside a given circle to the circle. [GC4] [MA2013] GEO (912) 28: Derive, using similarity, the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. [GC5] [MA2013] GEO (912) 29: Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. [GGPE1] [MA2013] GEO (912) 35: Give an informal argument for the formulas for the circumference of a circle; area of a circle; and volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments. [GGMD1] [MA2013] GEO (912) 37: Determine the relationship between surface areas of similar figures and volumes of similar figures. (Alabama)
Geometry StepbyStep
http://agutie.homest...
This site provides a mix of sound, science, and Incan history in order to raise students' interest in Euclidean geometry. Visitors will find geometry problems, proofs, quizzes, puzzles, quotations, visual displays, "scientific speculation", and more.
Teacher Tools
Save to ALEX 
Share

Show Details
Title: Geometry StepbyStep
Description:
This site provides a mix of sound, science, and Incan history in order to raise students' interest in Euclidean geometry. Visitors will find geometry problems, proofs, quizzes, puzzles, quotations, visual displays, "scientific speculation", and more.
Standard(s): [MA2013] GEO (912) 1: Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment based on the undefined notions of point, line, distance along a line, and distance around a circular arc. [GCO1] [MA2013] GEO (912) 5: Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using, e.g., graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another. [GCO5] [MA2013] GEO (912) 7: Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. [GCO7] [MA2013] GEO (912) 8: Explain how the criteria for triangle congruence, anglesideangle (ASA), sideangleside (SAS), and sidesideside (SSS), follow from the definition of congruence in terms of rigid motions. [GCO8] [MA2013] GEO (912) 9: Prove theorems about lines and angles. Theorems include vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; and points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints. [GCO9] [MA2013] GEO (912) 10: Prove theorems about triangles. Theorems include measures of interior angles of a triangle sum to 180^{o}, base angles of isosceles triangles are congruent, the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length, and the medians of a triangle meet at a point. [GCO10] [MA2013] GEO (912) 11: Prove theorems about parallelograms. Theorems include opposite sides are congruent, opposite angles are congruent; the diagonals of a parallelogram bisect each other; and conversely, rectangles are parallelograms with congruent diagonals. [GCO11] [MA2013] GEO (912) 12: Make formal geometric constructions with a variety of tools and methods such as compass and straightedge, string, reflective devices, paper folding, and dynamic geometric software. Constructions include copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line. [GCO12] [MA2013] GEO (912) 13: Construct an equilateral triangle, a square, and a regular hexagon inscribed in a circle. [GCO13] [MA2013] GEO (912) 16: Use the properties of similarity transformations to establish the angleangle (AA) criterion for two triangles to be similar. [GSRT3] [MA2013] GEO (912) 17: Prove theorems about triangles. Theorems include a line parallel to one side of a triangle divides the other two proportionally, and conversely; and the Pythagorean Theorem proved using triangle similarity. [GSRT4] [MA2013] GEO (912) 18: Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. [GSRT5] [MA2013] GEO (912) 19: Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle leading to definitions of trigonometric ratios for acute angles. [GSRT6] [MA2013] GEO (912) 20: Explain and use the relationship between the sine and cosine of complementary angles. [GSRT7] [MA2013] GEO (912) 21: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.* [GSRT8] [MA2013] GEO (912) 22: (+) Prove the Law of Sines and the Law of Cosines and use them to solve problems. [GSRT10] [MA2013] GEO (912) 23: (+) Understand and apply the Law of Sines and the Law of Cosines to find unknown measurements in right and nonright triangles (e.g., surveying problems, resultant forces).
[GSRT11] [MA2013] GEO (912) 24: Prove that all circles are similar. [GC1] [MA2013] GEO (912) 25: Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle. [GC2] [MA2013] GEO (912) 26: Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle. [GC3] [MA2013] GEO (912) 27: (+) Construct a tangent line from a point outside a given circle to the circle. [GC4] [MA2013] GEO (912) 28: Derive, using similarity, the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. [GC5] [MA2013] GEO (912) 29: Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. [GGPE1] [MA2013] GEO (912) 35: Give an informal argument for the formulas for the circumference of a circle; area of a circle; and volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments. [GGMD1] [MA2013] GEO (912) 37: Determine the relationship between surface areas of similar figures and volumes of similar figures. (Alabama)
Geometry StepbyStep
http://agutie.homest...
This site provides a mix of sound, science, and Incan history in order to raise students' interest in Euclidean geometry. Visitors will find geometry problems, proofs, quizzes, puzzles, quotations, visual displays, "scientific speculation", and more.
Save to ALEX 
Share

Show Details
Title: The Pythagorean Theorem TV
Description:
This website shows videos to help students and teachers understand the Pythagorean Theorem.
Standard(s): [MA2013] (8) 21: Explain a proof of the Pythagorean Theorem and its converse. [8G6] [MA2013] (8) 22: Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in realworld and mathematical problems in two and three dimensions. [8G7] [MA2013] (8) 23: Apply the Pythagorean Theorem to find the distance between two points in a coordinate system. [8G8] [MA2013] GEO (912) 17: Prove theorems about triangles. Theorems include a line parallel to one side of a triangle divides the other two proportionally, and conversely; and the Pythagorean Theorem proved using triangle similarity. [GSRT4] [MA2013] GEO (912) 21: Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.* [GSRT8] [MA2013] GEO (912) 29: Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. [GGPE1] [MA2013] GEO (912) 30: Use coordinates to prove simple geometric theorems algebraically. [GGPE4] [MA2013] ALC (912) 8: Determine missing information in an applicationbased situation using properties of right triangles, including trigonometric ratios and the Pythagorean Theorem. (Alabama) [MA2013] MI1 (912) 10: Determine the mathematical impact of the ancient Greeks, including Archimedes, Eratosthenes, Euclid, Hypatia, Pythagoras, and the Pythagorean Society. (Alabama)
The Pythagorean Theorem TV
http://www.mathtv.co...
This website shows videos to help students and teachers understand the Pythagorean Theorem.

