ALEX Lesson Plans
Save to ALEX 
Share

Show Details
Title: Figure it out...
Description:
This is an Internetbased (online) and group discussion lesson. Students will learn the formulas for surface area and volume of cylinders and cones. Students should have previously learned how to determine the area for a circle; however, this lesson will review that particular process.
Standard(s): [MA2013] GEO (912) 36: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* [GGMD3] [MA2013] GEO (912) 37: Determine the relationship between surface areas of similar figures and volumes of similar figures. (Alabama)
Subject: Mathematics (9  12)
Title: Figure it out...
Description: This is an Internetbased (online) and group discussion lesson. Students will learn the formulas for surface area and volume of cylinders and cones. Students should have previously learned how to determine the area for a circle; however, this lesson will review that particular process.
Save to ALEX 
Share

Show Details
Title: Surface Area of Pyramids and Cones
Description:
In this inquirybased lesson, students will discover the formulas for the surface area of pyramids and cones.
This lesson plan was created by exemplary Alabama Math Teachers through the AMSTI project.
Standard(s): [MA2013] GEO (912) 36: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* [GGMD3] [MA2013] GEO (912) 37: Determine the relationship between surface areas of similar figures and volumes of similar figures. (Alabama) [MA2013] GEO (912) 36: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* [GGMD3] [MA2013] GEO (912) 37: Determine the relationship between surface areas of similar figures and volumes of similar figures. (Alabama)
Subject: Mathematics (9  12)
Title: Surface Area of Pyramids and Cones
Description: In this inquirybased lesson, students will discover the formulas for the surface area of pyramids and cones.
This lesson plan was created by exemplary Alabama Math Teachers through the AMSTI project.
Save to ALEX 
Share

Show Details
Title: Pennies, Pennies and More Pennies
Description:
Students will work in cooperative groups to determine the number of pennies to line the baseboard, cover the floor and fill the room. Students will determine the geometric probability that the head of pin will land on the penny and not the floor space between pennies.This lesson plan was created as a result of the Girls Engaged in Math and Science, GEMS Project funded by the Malone Family Foundation.
Standard(s): [MA2013] GEO (912) 34: Determine areas and perimeters of regular polygons, including inscribed or circumscribed polygons, given the coordinates of vertices or other characteristics. (Alabama) [MA2013] GEO (912) 36: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* [GGMD3] [MA2013] AL2 (912) 41: Construct and interpret twoway frequency tables of data when two categories are associated with each object being classified. Use the twoway table as a sample space to decide if events are independent and to approximate conditional probabilities. [SCP4]
Subject: Mathematics (9  12)
Title: Pennies, Pennies and More Pennies
Description: Students will work in cooperative groups to determine the number of pennies to line the baseboard, cover the floor and fill the room. Students will determine the geometric probability that the head of pin will land on the penny and not the floor space between pennies.This lesson plan was created as a result of the Girls Engaged in Math and Science, GEMS Project funded by the Malone Family Foundation.
Save to ALEX 
Share

Show Details
Title: Water Tank Creations Part I
Description:
In this lesson students will study the surface area and volume of threedimensional shapes by creating a water tank comprised of these shapes. Students will work in groups of 45 to research water tanks, develop scale drawings and build a scale model. Teacher will evaluate the project using a rubric and students will assess one anothers cooperative skills using a rubric.
Standard(s): [TC2] CA2 (912) 5: Utilize advanced features of spreadsheet software, including creating charts and graphs,
sorting and filtering data, creating formulas, and applying functions. [TC2] CA2 (912) 4: Utilize advanced features of word processing software, including outlining, tracking changes,
hyperlinking, and mail merging. [MA2013] (7) 11: Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale. [7G1] [MA2013] (7) 12: Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle. [7G2] [MA2013] (7) 16: Solve realworld and mathematical problems involving area, volume, and surface area of two and threedimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. [7G6] [MA2013] (8) 24: Know the formulas for the volumes of cones, cylinders, and spheres, and use them to solve realworld and mathematical problems. [8G9] [MA2013] AL1 (912) 4: Use units as a way to understand problems and to guide the solution of multistep problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. [NQ1] [MA2013] AL1 (912) 5: Define appropriate quantities for the purpose of descriptive modeling. [NQ2] [MA2013] AL1 (912) 6: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. [NQ3] [MA2013] ALC (912) 11: Use ratios of perimeters, areas, and volumes of similar figures to solve applied problems. (Alabama) [MA2013] GEO (912) 36: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* [GGMD3] [MA2013] GEO (912) 37: Determine the relationship between surface areas of similar figures and volumes of similar figures. (Alabama) [MA2013] GEO (912) 39: Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).* [GMG1] [MA2013] GEO (912) 40: Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, British Thermal Units (BTUs) per cubic foot).* [GMG2]
Subject: Mathematics (7  12), or Technology Education (9  12)
Title: Water Tank Creations Part I
Description: In this lesson students will study the surface area and volume of threedimensional shapes by creating a water tank comprised of these shapes. Students will work in groups of 45 to research water tanks, develop scale drawings and build a scale model. Teacher will evaluate the project using a rubric and students will assess one anothers cooperative skills using a rubric.
Save to ALEX 
Share

Show Details
Title: Creating a Water Tank  Part II "Selling the Tank"
Description:
Working in groups of 45 students will take the information,pictures and 3D model of the water tank they assembled in Part I of Creating a Water Tank and develop a web page and a video presentation. The web page will be a tool to advertise their water tank construction company and must include hyperlinks and digital pictures. The video presentation will be a "sales pitch" to a city council. The web page and video will be scored using a rubric. The web page and video must include the surface area, volume and cost of construction.
Standard(s): [TC2] CA2 (912) 12: Use digital tools to publish curriculumrelated content. [TC2] CA2 (912) 9: Practice ethical and legal use of technology systems and digital content. [MA2013] (7) 11: Solve problems involving scale drawings of geometric figures, including computing actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale. [7G1] [MA2013] (7) 12: Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle. [7G2] [MA2013] (7) 13: Describe the twodimensional figures that result from slicing threedimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids. [7G3] [MA2013] (7) 16: Solve realworld and mathematical problems involving area, volume, and surface area of two and threedimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. [7G6] [MA2013] ALC (912) 7: Use analytical, numerical, and graphical methods to make financial and economic decisions, including those involving banking and investments, insurance, personal budgets, credit purchases, recreation, and deceptive and fraudulent pricing and advertising. (Alabama) [MA2013] ALC (912) 10: Critique measurements in terms of precision, accuracy, and approximate error. (Alabama) [MA2013] ALC (912) 11: Use ratios of perimeters, areas, and volumes of similar figures to solve applied problems. (Alabama) [MA2013] GEO (912) 36: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* [GGMD3] [MA2013] GEO (912) 37: Determine the relationship between surface areas of similar figures and volumes of similar figures. (Alabama) [MA2013] GEO (912) 39: Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).* [GMG1] [MA2013] GEO (912) 41: Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost, working with typographic grid systems based on ratios).* [GMG3]
Subject: Mathematics (7  12), or Technology Education (9  12)
Title: Creating a Water Tank  Part II "Selling the Tank"
Description: Working in groups of 45 students will take the information,pictures and 3D model of the water tank they assembled in Part I of Creating a Water Tank and develop a web page and a video presentation. The web page will be a tool to advertise their water tank construction company and must include hyperlinks and digital pictures. The video presentation will be a "sales pitch" to a city council. The web page and video will be scored using a rubric. The web page and video must include the surface area, volume and cost of construction.
Thinkfinity Lesson Plans
Save to ALEX 
Share

Show Details
Title: Are They Possible? Overhead
Description:
This reproducible transparency, from an Illuminations lesson, depicts several isometric drawings of several '' impossible'' figures.
Standard(s): [MA2013] (6) 22: Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas V = lwh and V = Bh to find volumes of right rectangular prisms with fractional edge lengths in the context of solving realworld and mathematical problems. [6G2] [MA2013] (6) 24: Represent threedimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving realworld and mathematical problems. [6G4] [MA2013] GEO (912) 36: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* [GGMD3] [MA2013] GEO (912) 37: Determine the relationship between surface areas of similar figures and volumes of similar figures. (Alabama)
Subject: Mathematics Title: Are They Possible? Overhead
Description: This reproducible transparency, from an Illuminations lesson, depicts several isometric drawings of several '' impossible'' figures. Thinkfinity Partner: Illuminations Grade Span: 6,7,8
Save to ALEX 
Share

Show Details
Title: Do They Match? Overhead
Description:
This reproducible transparency, from an Illuminations lesson, depicts several pairs of isometric drawings of threedimensional figures. Students determine whether the drawings in each pair represent the same shape as one another.
Standard(s): [MA2013] (6) 22: Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas V = lwh and V = Bh to find volumes of right rectangular prisms with fractional edge lengths in the context of solving realworld and mathematical problems. [6G2] [MA2013] (6) 24: Represent threedimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving realworld and mathematical problems. [6G4] [MA2013] GEO (912) 36: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* [GGMD3]
Subject: Mathematics Title: Do They Match? Overhead
Description: This reproducible transparency, from an Illuminations lesson, depicts several pairs of isometric drawings of threedimensional figures. Students determine whether the drawings in each pair represent the same shape as one another. Thinkfinity Partner: Illuminations Grade Span: 6,7,8
Save to ALEX 
Share

Show Details
Title: Building Using the FrontRightTop View
Description:
In this lesson, one of a multipart unit from Illuminations, students explore drawing the frontrighttop view when given a three dimensional figure built from cubes. Students also explore building a three dimensional figure when given the frontrighttop view.
Standard(s): [MA2013] (6) 22: Find the volume of a right rectangular prism with fractional edge lengths by packing it with unit cubes of the appropriate unit fraction edge lengths, and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas V = lwh and V = Bh to find volumes of right rectangular prisms with fractional edge lengths in the context of solving realworld and mathematical problems. [6G2] [MA2013] (6) 24: Represent threedimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving realworld and mathematical problems. [6G4] [MA2013] (7) 13: Describe the twodimensional figures that result from slicing threedimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids. [7G3] [MA2013] (8) 24: Know the formulas for the volumes of cones, cylinders, and spheres, and use them to solve realworld and mathematical problems. [8G9] [MA2013] GEO (912) 36: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* [GGMD3] [MA2013] GEO (912) 38: Identify the shapes of twodimensional crosssections of threedimensional objects, and identify threedimensional objects generated by rotations of twodimensional objects. [GGMD4]
Subject: Mathematics Title: Building Using the FrontRightTop View
Description: In this lesson, one of a multipart unit from Illuminations, students explore drawing the frontrighttop view when given a three dimensional figure built from cubes. Students also explore building a three dimensional figure when given the frontrighttop view. Thinkfinity Partner: Illuminations Grade Span: 6,7,8
Save to ALEX 
Share

Show Details
Title: Circle Packing
Description:
In this unit of three Illuminations lessons, students explore circles. In the first lesson students apply the concepts of area and circumference to explore arrangements for soda cans that lead to a more efficient package. In the second lesson they then experiment with threedimensional arrangements to discover the effect of gravity on the arrangement of soda cans. The final lesson allows students to examine the more advanced mathematical concept of curvature. There are also links to online interactives that are used in the lessons.
Standard(s): [MA2013] (7) 14: Know the formulas for the area and circumference of a circle, and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle. [7G4] [MA2013] (7) 16: Solve realworld and mathematical problems involving area, volume, and surface area of two and threedimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. [7G6] [MA2013] GEO (912) 36: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* [GGMD3] [MA2013] GEO (912) 39: Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).* [GMG1] [MA2013] GEO (912) 41: Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost, working with typographic grid systems based on ratios).* [GMG3]
Subject: Mathematics Title: Circle Packing
Description: In this unit of three Illuminations lessons, students explore circles. In the first lesson students apply the concepts of area and circumference to explore arrangements for soda cans that lead to a more efficient package. In the second lesson they then experiment with threedimensional arrangements to discover the effect of gravity on the arrangement of soda cans. The final lesson allows students to examine the more advanced mathematical concept of curvature. There are also links to online interactives that are used in the lessons. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: Circle Packing and Curvature
Description:
In this lesson, one of a threepart unit from Illuminations, students investigate the curvature of circles. Students apply definitions and theorems regarding curvature to solve circle problems. In addition, there are links to an online activity sheet and other related resources.
Standard(s): [MA2013] (8) 24: Know the formulas for the volumes of cones, cylinders, and spheres, and use them to solve realworld and mathematical problems. [8G9] [MA2013] GEO (912) 28: Derive, using similarity, the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. [GC5] [MA2013] GEO (912) 36: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* [GGMD3] [MA2013] GEO (912) 39: Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).* [GMG1] [MA2013] GEO (912) 41: Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost, working with typographic grid systems based on ratios).* [GMG3]
Subject: Mathematics Title: Circle Packing and Curvature
Description: In this lesson, one of a threepart unit from Illuminations, students investigate the curvature of circles. Students apply definitions and theorems regarding curvature to solve circle problems. In addition, there are links to an online activity sheet and other related resources. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: Tetrahedral Kites
Description:
In this Illuminations lesson, students construct tetrahedrons and describe the linear, area and volume using nontraditional units of measure. They combine four tetrahedra to form a similar tetrahedron whose linear dimensions are twice the original tetrahedron. The area and volume relationships between the first and second tetrahedra are explored, and generalizations for the relationships are developed. In addition, there is a link to an assessment activity sheet.
Standard(s): [MA2013] GEO (912) 36: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* [GGMD3] [MA2013] GEO (912) 37: Determine the relationship between surface areas of similar figures and volumes of similar figures. (Alabama)
Subject: Mathematics Title: Tetrahedral Kites
Description: In this Illuminations lesson, students construct tetrahedrons and describe the linear, area and volume using nontraditional units of measure. They combine four tetrahedra to form a similar tetrahedron whose linear dimensions are twice the original tetrahedron. The area and volume relationships between the first and second tetrahedra are explored, and generalizations for the relationships are developed. In addition, there is a link to an assessment activity sheet. Thinkfinity Partner: Illuminations Grade Span: 6,7,8,9,10,11,12
Save to ALEX 
Share

Show Details
Title: Soda Cans
Description:
This reproducible activity sheet, from an Illuminations lesson, guides students through a simulation in which they try different arrangements to make the most efficient use of space and thus pack the most soda cans into a rectangular packing box.
Standard(s): [MA2013] GEO (912) 1: Know precise definitions of angle, circle, perpendicular line, parallel line, and line segment based on the undefined notions of point, line, distance along a line, and distance around a circular arc. [GCO1] [MA2013] GEO (912) 12: Make formal geometric constructions with a variety of tools and methods such as compass and straightedge, string, reflective devices, paper folding, and dynamic geometric software. Constructions include copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line. [GCO12] [MA2013] GEO (912) 24: Prove that all circles are similar. [GC1] [MA2013] GEO (912) 25: Identify and describe relationships among inscribed angles, radii, and chords. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle. [GC2] [MA2013] GEO (912) 27: (+) Construct a tangent line from a point outside a given circle to the circle. [GC4] [MA2013] GEO (912) 28: Derive, using similarity, the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. [GC5] [MA2013] GEO (912) 36: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* [GGMD3] [MA2013] GEO (912) 38: Identify the shapes of twodimensional crosssections of threedimensional objects, and identify threedimensional objects generated by rotations of twodimensional objects. [GGMD4] [MA2013] GEO (912) 39: Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).* [GMG1] [MA2013] GEO (912) 41: Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost, working with typographic grid systems based on ratios).* [GMG3] [MA2013] ALC (912) 7: Use analytical, numerical, and graphical methods to make financial and economic decisions, including those involving banking and investments, insurance, personal budgets, credit purchases, recreation, and deceptive and fraudulent pricing and advertising. (Alabama) [MA2013] ALC (912) 9: Analyze aesthetics of physical models for line symmetry, rotational symmetry, or the golden ratio. (Alabama) [MA2013] ALC (912) 10: Critique measurements in terms of precision, accuracy, and approximate error. (Alabama) [MA2013] ALC (912) 11: Use ratios of perimeters, areas, and volumes of similar figures to solve applied problems. (Alabama)
Subject: Mathematics Title: Soda Cans
Description: This reproducible activity sheet, from an Illuminations lesson, guides students through a simulation in which they try different arrangements to make the most efficient use of space and thus pack the most soda cans into a rectangular packing box. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
ALEX Podcasts
Save to ALEX 
Share

Show Details
Title: Pi  The Mathematical Dessert
Overview:
Watch this podcast and discover the mathematical number pi! Discussion includes the history of pi, mathematical concept of pi, and modern notation of the ∏ symbol used today. Interesting trivia, jokes, pi reciting contests, and pi day celebrations are included. This podcast is a must to add to your mathematics classroom and especially any pi day celebration. Standard(s):
[MA2013] (6) 24: Represent threedimensional figures using nets made up of rectangles and triangles, and use the nets to find the surface area of these figures. Apply these techniques in the context of solving realworld and mathematical problems. [6G4] [MA2013] (7) 14: Know the formulas for the area and circumference of a circle, and use them to solve problems; give an informal derivation of the relationship between the circumference and area of a circle. [7G4] [MA2013] (7) 16: Solve realworld and mathematical problems involving area, volume, and surface area of two and threedimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. [7G6] [MA2013] GEO (912) 36: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* [GGMD3]
Pi  The Mathematical Dessert Overview: Watch this podcast and discover the mathematical number pi! Discussion includes the history of pi, mathematical concept of pi, and modern notation of the ∏ symbol used today. Interesting trivia, jokes, pi reciting contests, and pi day celebrations are included. This podcast is a must to add to your mathematics classroom and especially any pi day celebration.
Web Resources
Lesson Plans
Save to ALEX 
Share

Show Details
Title: Fishing for the Best Prism
Description:
In this lesson, students use polydrons to create nets of rectangular prisms. They discover that there are many configurations for rectangular prisms with the same volume, and determine that certain configurations minimize surface area. The lesson continues in a discovery activity related to building the most costefficient and appealing fish tank.
Standard(s): [MA2013] GEO (912) 36: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* [GGMD3] [MA2013] GEO (912) 37: Determine the relationship between surface areas of similar figures and volumes of similar figures. (Alabama)
Fishing for the Best Prism
http://illuminations...
In this lesson, students use polydrons to create nets of rectangular prisms. They discover that there are many configurations for rectangular prisms with the same volume, and determine that certain configurations minimize surface area. The lesson continues in a discovery activity related to building the most costefficient and appealing fish tank.
Thinkfinity Learning Activities
Save to ALEX 
Share

Show Details
Title: Flowing Through Mathematics
Description:
This student interactive, from Illuminations, simulates water flowing from a tube through a hole in the bottom. The diameter of the hole can be adjusted and data can be gathered for the height or volume of water in the tube at any time.
Standard(s): [MA2013] AL1 (912) 13: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 31: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL1 (912) 32: Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. [FIF8] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 37: Distinguish between situations that can be modeled with linear functions and with exponential functions. [FLE1] [MA2013] AL1 (912) 38: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). [FLE2] [MA2013] GEO (912) 36: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* [GGMD3] [MA2013] GEO (912) 39: Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).* [GMG1] [MA2013] GEO (912) 40: Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, British Thermal Units (BTUs) per cubic foot).* [GMG2] [MA2013] ALC (912) 3: Use formulas or equations of functions to calculate outcomes of exponential growth or decay. (Alabama) [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama)
Subject: Mathematics Title: Flowing Through Mathematics
Description: This student interactive, from Illuminations, simulates water flowing from a tube through a hole in the bottom. The diameter of the hole can be adjusted and data can be gathered for the height or volume of water in the tube at any time. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12

