ALEX Lesson Plans
Save to ALEX 
Share

Show Details
Title: Adding Up Stats
Description:
In groups, students will conduct surveys and collect the data from their surveys. Then they will analyze the data and create various methods of displaying the collected data.
Standard(s): [TC2] (68) 11: Use digital tools and strategies to locate, collect, organize, evaluate, and synthesize
information. [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6]
Subject: Mathematics (9  12), or Technology Education (6  8)
Title: Adding Up Stats
Description: In groups, students will conduct surveys and collect the data from their surveys. Then they will analyze the data and create various methods of displaying the collected data.
Save to ALEX 
Share

Show Details
Title: The Composition of Seawater
Description:
This lesson develops student understanding of ocean water as a true solution. It demonstrates the differences of salinity and "salt" water. This lesson prepares the student to be able to apply the concepts of temperature, density, and layering of the oceans before conducting a lab dealing with these variables.This lesson plan was created as a result of the Girls Engaged in Math and Science, GEMS Project funded by the Malone Family Foundation.
Standard(s): [S1] AQU (912) 1: Differentiate among freshwater, brackish water, and saltwater ecosystems. [S1] ENV (912) 7: Identify reasons coastal waters serve as an important resource. [S1] MAR (912) 2: Differentiate among freshwater, brackish water, and saltwater. [S1] MAR (912) 5: Discuss physical and chemical properties of saltwater. [S1] CHE (912) 1: Differentiate among pure substances, mixtures, elements, and compounds. [S1] CHE (912) 4: Describe solubility in terms of energy changes associated with the solution process. [S1] E&S (912) 1: Describe sources of energy, including solar, gravitational, geothermal, and nuclear. [S1] E&S (912) 2: Describe effects on weather of energy transfer within and among the atmosphere, hydrosphere, biosphere, and lithosphere. [S1] ENV (912) 2: Evaluate various fossil fuels for their effectiveness as energy resources. [S1] ENV (912) 7: Identify reasons coastal waters serve as an important resource. [S1] ENV (912) 8: Identify major contaminants in water resulting from natural phenomena, homes, industry, and agriculture. [S1] GEL (912) 14: Explain the interaction of the continuous processes of waves, tides, and winds with the coastal environment. [S1] MAR (912) 2: Differentiate among freshwater, brackish water, and saltwater. [S1] MAR (912) 3: Describe physical characteristics of oceans, including topography of the ocean floor, plate tectonics, wave motion, depth, and pressure. [S1] MAR (912) 4: Recognize interactions between the atmosphere and the ocean. [S1] MAR (912) 5: Discuss physical and chemical properties of saltwater. [S1] PHS (912) 2: Identify solutions in terms of components, solubility, concentration, and conductivity. [MA2013] AL1 (912) 37: Distinguish between situations that can be modeled with linear functions and with exponential functions. [FLE1] [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6] [MA2013] AL2 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] ALT (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] ALT (912) 33: Write a function that describes a relationship between two quantities.* [FBF1]
Subject: Mathematics (9  12), or Science (9  12)
Title: The Composition of Seawater
Description: This lesson develops student understanding of ocean water as a true solution. It demonstrates the differences of salinity and "salt" water. This lesson prepares the student to be able to apply the concepts of temperature, density, and layering of the oceans before conducting a lab dealing with these variables.This lesson plan was created as a result of the Girls Engaged in Math and Science, GEMS Project funded by the Malone Family Foundation.
Save to ALEX 
Share

Show Details
Title: Statistically Thinking
Description:
The object of this project is for students to learn how to find univariate and bivariate statistics for sets of data. Also, the students will be able to determine if two sets of data are linearly correlated and to what degree. The students will use Microsoft PowerPoint and Excel to find, organize, and present their projects to the class.
Standard(s): [MA2013] (7) 20: Use measures of center and measures of variability for numerical data from random samples to draw informal comparative inferences about two populations. [7SP4] [MA2013] (8) 25: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. [8SP1] [MA2013] (8) 26: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. [8SP2] [MA2013] AL1 (912) 41: Represent data with plots on the real number line (dot plots, histograms, and box plots). [SID1] [MA2013] AL1 (912) 42: Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. [SID2] [MA2013] AL1 (912) 43: Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). [SID3] [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama)
Subject: Mathematics (7  12)
Title: Statistically Thinking
Description: The object of this project is for students to learn how to find univariate and bivariate statistics for sets of data. Also, the students will be able to determine if two sets of data are linearly correlated and to what degree. The students will use Microsoft PowerPoint and Excel to find, organize, and present their projects to the class.
Save to ALEX 
Share

Show Details
Title: Math is Functional
Description:
This lesson is a technologybased activity in which students extend graphing of linear functions to the use of spreadsheet software. After students have become proficient in constructing a table of values, students are able to efficiently graph equations with more extensive computational requirements. Furthermore, inquiry and discovery about slope and yintercept will help students conceptualize material normally presented in Algebra I textbooks.
Standard(s): [MA2013] AL2 (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6] [MA2013] AL1 (912) 31: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] AL1 (912) 46: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. [SID7] [MA2013] AL1 (912) 37: Distinguish between situations that can be modeled with linear functions and with exponential functions. [FLE1] [MA2013] AL1 (912) 30: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] AL1 (912) 22: Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). [AREI10] [TC2] CA2 (912) 5: Utilize advanced features of spreadsheet software, including creating charts and graphs,
sorting and filtering data, creating formulas, and applying functions. [TC2] CA2 (912) 14: Use digital tools to defend solutions to authentic problems. [MA2013] AL1 (912) 13: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2]
Subject: Mathematics (9  12), or Technology Education (9  12)
Title: Math is Functional
Description: This lesson is a technologybased activity in which students extend graphing of linear functions to the use of spreadsheet software. After students have become proficient in constructing a table of values, students are able to efficiently graph equations with more extensive computational requirements. Furthermore, inquiry and discovery about slope and yintercept will help students conceptualize material normally presented in Algebra I textbooks.
Save to ALEX 
Share

Show Details
Title: Ballistic Statistics!
Description:
Students will collect examples of various statistical instruments and form an electronic scrapbook. These materials will be gathered from electronic sources in addition to periodicals and other print resources.
Standard(s): [MA2013] ALC (912) 10: Critique measurements in terms of precision, accuracy, and approximate error. (Alabama) [MA2013] AL1 (912) 42: Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. [SID2] [MA2013] AL1 (912) 43: Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). [SID3] [MA2013] AL1 (912) 41: Represent data with plots on the real number line (dot plots, histograms, and box plots). [SID1] [TC2] CA2 (912) 6: Utilize advanced features of multimedia software, including image, video, and audio editing. [TC2] CA2 (912) 9: Practice ethical and legal use of technology systems and digital content. [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama)
Subject: Mathematics (9  12), or Technology Education (9  12)
Title: Ballistic Statistics!
Description: Students will collect examples of various statistical instruments and form an electronic scrapbook. These materials will be gathered from electronic sources in addition to periodicals and other print resources.
Save to ALEX 
Share

Show Details
Title: Swimming Pool Math
Description:
Students will use a swimming pool example to practice finding perimeter and area of different rectangles.
Standard(s): [MA2013] GEO (912) 39: Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).* [GMG1] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] ALC (912) 1: Create algebraic models for applicationbased problems by developing and solving equations and inequalities, including those involving direct, inverse, and joint variation. (Alabama) [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 14: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities and interpret solutions as viable or nonviable options in a modeling context. [ACED3] [MA2013] AL1 (912) 12: Create equations and inequalities in one variable, and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. [ACED1] [MA2013] AL1 (912) 4: Use units as a way to understand problems and to guide the solution of multistep problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. [NQ1] [MA2013] GEO (912) 12: Make formal geometric constructions with a variety of tools and methods such as compass and straightedge, string, reflective devices, paper folding, and dynamic geometric software. Constructions include copying a segment; copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines, including the perpendicular bisector of a line segment; and constructing a line parallel to a given line through a point not on the line. [GCO12] [MA2013] ALC (912) 11: Use ratios of perimeters, areas, and volumes of similar figures to solve applied problems. (Alabama) [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 13: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL1 (912) 5: Define appropriate quantities for the purpose of descriptive modeling. [NQ2] [MA2013] GEO (912) 41: Apply geometric methods to solve design problems (e.g., designing an object or structure to satisfy physical constraints or minimize cost, working with typographic grid systems based on ratios).* [GMG3] [MA2013] (6) 21: Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes; apply these techniques in the context of solving realworld and mathematical problems. [6G1] [MA2013] (8) 24: Know the formulas for the volumes of cones, cylinders, and spheres, and use them to solve realworld and mathematical problems. [8G9]
Subject: Mathematics (6  12)
Title: Swimming Pool Math
Description: Students will use a swimming pool example to practice finding perimeter and area of different rectangles.
Thinkfinity Lesson Plans
Save to ALEX 
Share

Show Details
Title: The National Debt and Wars: Suggested Solutions
Description:
These reproducible graphs, from an Illuminations lesson, feature possible solutions to a student activity sheet in which students collect information about the national debt, plot the data by decade and determine whether an exponential curve is a good fit for the data.
Standard(s): [MA2013] AL1 (912) 41: Represent data with plots on the real number line (dot plots, histograms, and box plots). [SID1] [MA2013] AL1 (912) 42: Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. [SID2] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama)
Subject: Mathematics,Social Studies Title: The National Debt and Wars: Suggested Solutions
Description: These reproducible graphs, from an Illuminations lesson, feature possible solutions to a student activity sheet in which students collect information about the national debt, plot the data by decade and determine whether an exponential curve is a good fit for the data. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: Numerical Analysis
Description:
In this lesson, one of a multipart unit from Illuminations, students use iteration, recursion, and algebra to model and analyze a changing fish population. They use an interactive spreadsheet application to investigate their models.
Standard(s): [MA2013] AL1 (912) 22: Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). [AREI10] [MA2013] AL1 (912) 27: Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. [FIF3] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 35: Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.* [FBF2] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] DM1 (912) 3: Use the recursive process and difference equations to create fractals, population growth models, sequences, series, and compound interest models. (Alabama)
Subject: Mathematics,Science Title: Numerical Analysis
Description: In this lesson, one of a multipart unit from Illuminations, students use iteration, recursion, and algebra to model and analyze a changing fish population. They use an interactive spreadsheet application to investigate their models. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: Automobile Mileage: Year vs. Mileage
Description:
In this lesson, one of a multipart unit from Illuminations, students plot data about automobile mileage and interpret the meaning of the slope and yintercept in the resulting equation for the least squares regression line. By examining the graphical representation of the data, students analyze the meaning of the slope and yintercept of the line and interpret them in the context of the reallife application. Students also make decisions about the age and mileage of automobiles based on the equation of the least squares regression line. This lesson incorporates an interactive regression line applet.
Standard(s): [MA2013] AL1 (912) 30: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6] [MA2013] AL1 (912) 46: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. [SID7] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama)
Subject: Mathematics Title: Automobile Mileage: Year vs. Mileage
Description: In this lesson, one of a multipart unit from Illuminations, students plot data about automobile mileage and interpret the meaning of the slope and yintercept in the resulting equation for the least squares regression line. By examining the graphical representation of the data, students analyze the meaning of the slope and yintercept of the line and interpret them in the context of the reallife application. Students also make decisions about the age and mileage of automobiles based on the equation of the least squares regression line. This lesson incorporates an interactive regression line applet. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: Exact Ratio
Description:
This reproducible activity sheet, from an Illuminations lesson, features a series of questions pertaining to exact ratios and geometric sequences. In the lesson, students measure lengths on stringed musical instruments and discuss how the placement of frets on a fretted instrument is determined by a geometric sequence.
Standard(s): [MA2013] AL1 (912) 2: Rewrite expressions involving radicals and rational exponents using the properties of exponents. [NRN2] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 31: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL1 (912) 32: Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. [FIF8] [MA2013] AL1 (912) 33: Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). [FIF9] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 37: Distinguish between situations that can be modeled with linear functions and with exponential functions. [FLE1] [MA2013] AL1 (912) 38: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). [FLE2] [MA2013] AL1 (912) 39: Observe, using graphs and tables, that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. [FLE3] [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6] [MA2013] ALC (912) 3: Use formulas or equations of functions to calculate outcomes of exponential growth or decay. (Alabama) [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] AL2 (912) 12: Interpret expressions that represent a quantity in terms of its context.* [ASSE1] [MA2013] AL2 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] AL2 (912) 30: Graph functions expressed symbolically, and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL2 (912) 34: Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
[FBF3] [MA2013] PRE (912) 16: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. (Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Determine odd, even, neither.)* [FIF4] (Alabama) [MA2013] ALT (912) 30: Graph functions expressed symbolically, and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] ALT (912) 33: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 35: Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.* [FBF2]
Subject: Mathematics Title: Exact Ratio
Description: This reproducible activity sheet, from an Illuminations lesson, features a series of questions pertaining to exact ratios and geometric sequences. In the lesson, students measure lengths on stringed musical instruments and discuss how the placement of frets on a fretted instrument is determined by a geometric sequence. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: Make a Conjecture
Description:
In this lesson, one of a multipart unit from Illuminations, students explore rates of change and accumulation in context. They are asked to think about the mathematics involved in determining the amount of blood being pumped by a heart.
Standard(s): [MA2013] AL1 (912) 4: Use units as a way to understand problems and to guide the solution of multistep problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. [NQ1] [MA2013] AL1 (912) 5: Define appropriate quantities for the purpose of descriptive modeling. [NQ2] [MA2013] AL1 (912) 6: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. [NQ3] [MA2013] AL1 (912) 12: Create equations and inequalities in one variable, and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. [ACED1] [MA2013] AL1 (912) 13: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL1 (912) 14: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities and interpret solutions as viable or nonviable options in a modeling context. [ACED3] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] AL1 (912) 30: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] AL1 (912) 31: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL1 (912) 32: Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. [FIF8] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 37: Distinguish between situations that can be modeled with linear functions and with exponential functions. [FLE1] [MA2013] AL1 (912) 38: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). [FLE2] [MA2013] AL1 (912) 39: Observe, using graphs and tables, that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. [FLE3] [MA2013] AL1 (912) 40: Interpret the parameters in a linear or exponential function in terms of a context. [FLE5] [MA2013] AL1 (912) 41: Represent data with plots on the real number line (dot plots, histograms, and box plots). [SID1] [MA2013] AL1 (912) 42: Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. [SID2] [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6] [MA2013] ALC (912) 3: Use formulas or equations of functions to calculate outcomes of exponential growth or decay. (Alabama) [MA2013] ALC (912) 5: Determine approximate rates of change of nonlinear relationships from graphical and numerical data. (Alabama) [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] AL2 (912) 12: Interpret expressions that represent a quantity in terms of its context.* [ASSE1] [MA2013] AL2 (912) 20: Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. [ACED1] [MA2013] AL2 (912) 22: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. [ACED3] [MA2013] AL2 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] AL2 (912) 30: Graph functions expressed symbolically, and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL2 (912) 37: (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). [SMD6] [MA2013] AL2 (912) 38: (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). [SMD7] [MA2013] ALT (912) 12: Interpret expressions that represent a quantity in terms of its context.* [ASSE1] [MA2013] ALT (912) 20: Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. [ACED1] [MA2013] ALT (912) 22: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. [ACED3] [MA2013] PRE (912) 16: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. (Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Determine odd, even, neither.)* [FIF4] (Alabama) [MA2013] ALT (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] PRE (912) 17: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] ALT (912) 30: Graph functions expressed symbolically, and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] ALT (912) 33: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] ALT (912) 37: Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve. [SID4] [MA2013] PRE (912) 44: Understand statistics as a process for making inferences about population parameters based on a random sample from that population. [SIC1] [MA2013] PRE (912) 45: Decide if a specified model is consistent with results from a given datagenerating process, e.g., using simulation. [SIC2] [MA2013] PRE (912) 46: Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each. [SIC3] [MA2013] PRE (912) 49: Evaluate reports based on data. [SIC6] [MA2013] ALT (912) 41: (+) Use probabilities to make fair decisions (e.g., drawing by lots, using a random number generator). [SMD6] [MA2013] ALT (912) 42: (+) Analyze decisions and strategies using probability concepts (e.g., product testing, medical testing, pulling a hockey goalie at the end of a game). [SMD7] [MA2013] AL1 (912) 35: Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.* [FBF2]
Subject: Health,Mathematics Title: Make a Conjecture
Description: In this lesson, one of a multipart unit from Illuminations, students explore rates of change and accumulation in context. They are asked to think about the mathematics involved in determining the amount of blood being pumped by a heart. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: The Regression Line
Description:
This lesson, one of a multipart unit from Illuminations, provides students with the opportunity to investigate the relationship between a set of data points and a curve used to fit the data points, using a computerbased interactive tool. Using the Regression Line Applet, students investigate the straight line, which is the graph of a linear function.
Standard(s): [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama)
Subject: Mathematics Title: The Regression Line
Description: This lesson, one of a multipart unit from Illuminations, provides students with the opportunity to investigate the relationship between a set of data points and a curve used to fit the data points, using a computerbased interactive tool. Using the Regression Line Applet, students investigate the straight line, which is the graph of a linear function. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: The Regression Line and Correlation
Description:
This fourlesson unit, from Illuminations, provides students with the opportunity to investigate the relationship between a set of data points and a curve used to fit the data points, using a computerbased interactive tool. Using the Regression Line Applet, students investigate the properties of regression lines and correlation.
Standard(s): [MA2013] PRE (912) 42: Compute (using technology) and interpret the correlation coefficient of a linear fit. [SID8] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama)
Subject: Mathematics Title: The Regression Line and Correlation
Description: This fourlesson unit, from Illuminations, provides students with the opportunity to investigate the relationship between a set of data points and a curve used to fit the data points, using a computerbased interactive tool. Using the Regression Line Applet, students investigate the properties of regression lines and correlation. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: Think of a Graph
Description:
This reproducible transparency, from an Illuminations lesson, asks students to sketch a graph in which the side length of a square is graphed on the horizontal axis and the perimeter of the square is graphed on the vertical axis.
Standard(s): [MA2013] (8) 7: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. [8EE5] [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 25: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. [8SP1] [MA2013] (8) 26: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. [8SP2] [MA2013] (8) 27: Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. [8SP3] [MA2013] AL1 (912) 13: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL1 (912) 14: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities and interpret solutions as viable or nonviable options in a modeling context. [ACED3] [MA2013] AL1 (912) 22: Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). [AREI10] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] AL1 (912) 30: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] AL1 (912) 31: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6] [MA2013] AL1 (912) 46: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. [SID7] [MA2013] ALC (912) 1: Create algebraic models for applicationbased problems by developing and solving equations and inequalities, including those involving direct, inverse, and joint variation. (Alabama) [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama)
Subject: Mathematics Title: Think of a Graph
Description: This reproducible transparency, from an Illuminations lesson, asks students to sketch a graph in which the side length of a square is graphed on the horizontal axis and the perimeter of the square is graphed on the vertical axis. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: Shrinking Candles, Running Water, Folding Boxes
Description:
This lesson, from Illuminations, allows students to look for functions within a given set of data. After analyzing the data, the students should be able to determine the type of function that represents the data.
Standard(s): [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 40: Interpret the parameters in a linear or exponential function in terms of a context. [FLE5] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] ALT (912) 33: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] PRE (912) 44: Understand statistics as a process for making inferences about population parameters based on a random sample from that population. [SIC1] [MA2013] PRE (912) 48: Use data from a randomized experiment to compare two treatments; use simulations to decide if differences between parameters are significant. [SIC5] [MA2013] PRE (912) 25: Compare effects of parameter changes on graphs of transcendental functions. (Alabama)
Subject: Mathematics Title: Shrinking Candles, Running Water, Folding Boxes
Description: This lesson, from Illuminations, allows students to look for functions within a given set of data. After analyzing the data, the students should be able to determine the type of function that represents the data. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: Automobile Mileage: Comparing and Contrasting
Description:
In this lesson, one of a multipart unit from Illuminations, students compare and contrast their findings from previous lessons of the unit. This lesson allows students the time they need to think about and discuss what they have done in the previous lessons. This lesson provides the teacher with another opportunity to listen to student discourse and assess student understanding.
Standard(s): [MA2013] (8) 7: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. [8EE5] [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 25: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. [8SP1] [MA2013] (8) 26: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. [8SP2] [MA2013] (8) 27: Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. [8SP3] [MA2013] AL1 (912) 13: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL1 (912) 22: Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). [AREI10] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] AL1 (912) 30: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] AL1 (912) 31: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 38: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). [FLE2] [MA2013] AL1 (912) 40: Interpret the parameters in a linear or exponential function in terms of a context. [FLE5] [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6] [MA2013] AL1 (912) 46: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. [SID7] [MA2013] PRE (912) 42: Compute (using technology) and interpret the correlation coefficient of a linear fit. [SID8] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] AL2 (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL2 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] ALT (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] PRE (912) 16: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. (Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Determine odd, even, neither.)* [FIF4] (Alabama) [MA2013] ALT (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] PRE (912) 17: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] ALT (912) 33: Write a function that describes a relationship between two quantities.* [FBF1]
Subject: Mathematics Title: Automobile Mileage: Comparing and Contrasting
Description: In this lesson, one of a multipart unit from Illuminations, students compare and contrast their findings from previous lessons of the unit. This lesson allows students the time they need to think about and discuss what they have done in the previous lessons. This lesson provides the teacher with another opportunity to listen to student discourse and assess student understanding. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: Bathtub Water Levels
Description:
In this lesson, one of a multipart unit from Illuminations, students examine reallife data that illustrates a negative slope. Students interpret the meaning of the negative slope and yintercept of the graph of the reallife data. By examining the graphical representation of the data, students relate the slope and yintercept of the least squares regression line to the reallife data. They also interpret the correlation coefficient of the least squares regression line. This lesson incorporates an interactive regression line applet.
Standard(s): [MA2013] (8) 7: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. [8EE5] [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 25: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. [8SP1] [MA2013] (8) 26: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. [8SP2] [MA2013] (8) 27: Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. [8SP3] [MA2013] AL1 (912) 13: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL1 (912) 22: Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). [AREI10] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] AL1 (912) 30: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 37: Distinguish between situations that can be modeled with linear functions and with exponential functions. [FLE1] [MA2013] AL1 (912) 38: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). [FLE2] [MA2013] AL1 (912) 40: Interpret the parameters in a linear or exponential function in terms of a context. [FLE5] [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6] [MA2013] AL1 (912) 46: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. [SID7] [MA2013] PRE (912) 42: Compute (using technology) and interpret the correlation coefficient of a linear fit. [SID8] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] AL2 (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL2 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] ALT (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] PRE (912) 16: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. (Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Determine odd, even, neither.)* [FIF4] (Alabama) [MA2013] ALT (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] PRE (912) 17: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] ALT (912) 33: Write a function that describes a relationship between two quantities.* [FBF1]
Subject: Mathematics Title: Bathtub Water Levels
Description: In this lesson, one of a multipart unit from Illuminations, students examine reallife data that illustrates a negative slope. Students interpret the meaning of the negative slope and yintercept of the graph of the reallife data. By examining the graphical representation of the data, students relate the slope and yintercept of the least squares regression line to the reallife data. They also interpret the correlation coefficient of the least squares regression line. This lesson incorporates an interactive regression line applet. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: Exploring Linear Data
Description:
In this lesson, from Illuminations, students model linear data in a variety of settings. Students can work alone or in small groups to construct scatterplots, interpret data points and trends, and investigate the notion of line of best fit.
Standard(s): [S1] (8) 1: Identify steps within the scientific process. [MA2013] (8) 7: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. [8EE5] [MA2013] (8) 12: Compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). [8F2] [MA2013] (8) 13: Interpret the equation y = mx + b as defining a linear function whose graph is a straight line; give examples of functions that are not linear. [8F3] [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 15: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. [8F5] [MA2013] (8) 25: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. [8SP1] [MA2013] (8) 26: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. [8SP2] [MA2013] (8) 27: Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. [8SP3] [MA2013] (8) 28: Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a twoway table. Construct and interpret a twoway table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. [8SP4] [MA2013] AL1 (912) 13: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL1 (912) 14: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities and interpret solutions as viable or nonviable options in a modeling context. [ACED3] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] AL1 (912) 30: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] AL1 (912) 31: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 37: Distinguish between situations that can be modeled with linear functions and with exponential functions. [FLE1] [MA2013] AL1 (912) 40: Interpret the parameters in a linear or exponential function in terms of a context. [FLE5] [MA2013] AL1 (912) 46: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. [SID7] [MA2013] PRE (912) 42: Compute (using technology) and interpret the correlation coefficient of a linear fit. [SID8] [MA2013] ALC (912) 1: Create algebraic models for applicationbased problems by developing and solving equations and inequalities, including those involving direct, inverse, and joint variation. (Alabama) [MA2013] ALC (912) 7: Use analytical, numerical, and graphical methods to make financial and economic decisions, including those involving banking and investments, insurance, personal budgets, credit purchases, recreation, and deceptive and fraudulent pricing and advertising. (Alabama) [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] AL2 (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL2 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] ALT (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] PRE (912) 16: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. (Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Determine odd, even, neither.)* [FIF4] (Alabama) [MA2013] ALT (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] PRE (912) 17: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] ALT (912) 33: Write a function that describes a relationship between two quantities.* [FBF1]
Subject: Mathematics Title: Exploring Linear Data
Description: In this lesson, from Illuminations, students model linear data in a variety of settings. Students can work alone or in small groups to construct scatterplots, interpret data points and trends, and investigate the notion of line of best fit. Thinkfinity Partner: Illuminations Grade Span: 6,7,8,9,10,11,12
Save to ALEX 
Share

Show Details
Title: Gallery Walk
Description:
In this lesson, one of a multipart unit from Illuminations, students view the work of other students in the class and explain their own work. Students move from graph to graph during this time and, without any talking, view the work of their classmates. While on their Gallery Walk, the students think about the data their classmates plotted and whether or not the information accompanying each graph seems appropriate. Each pair of students then stands next to their own work and explains one of the graphs.
Standard(s): [MA2013] (8) 7: Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. [8EE5] [MA2013] (8) 11: Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in Grade 8.) [8F1] [MA2013] (8) 12: Compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). [8F2] [MA2013] (8) 13: Interpret the equation y = mx + b as defining a linear function whose graph is a straight line; give examples of functions that are not linear. [8F3] [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 15: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally. [8F5] [MA2013] (8) 25: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. [8SP1] [MA2013] (8) 26: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. [8SP2] [MA2013] (8) 27: Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. [8SP3] [MA2013] AL1 (912) 13: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL1 (912) 22: Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). [AREI10] [MA2013] AL1 (912) 25: Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x). [FIF1] [MA2013] AL1 (912) 26: Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. [FIF2] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] AL1 (912) 30: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] AL1 (912) 31: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 37: Distinguish between situations that can be modeled with linear functions and with exponential functions. [FLE1] [MA2013] AL1 (912) 38: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). [FLE2] [MA2013] AL1 (912) 40: Interpret the parameters in a linear or exponential function in terms of a context. [FLE5] [MA2013] AL1 (912) 46: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. [SID7] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] AL2 (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL2 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] ALT (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] PRE (912) 16: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. (Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Determine odd, even, neither.)* [FIF4] (Alabama) [MA2013] ALT (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] PRE (912) 17: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] ALT (912) 33: Write a function that describes a relationship between two quantities.* [FBF1]
Subject: Mathematics Title: Gallery Walk
Description: In this lesson, one of a multipart unit from Illuminations, students view the work of other students in the class and explain their own work. Students move from graph to graph during this time and, without any talking, view the work of their classmates. While on their Gallery Walk, the students think about the data their classmates plotted and whether or not the information accompanying each graph seems appropriate. Each pair of students then stands next to their own work and explains one of the graphs. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: Gather Data
Description:
In this lesson, one of a multipart unit from Illuminations, students explore rates of change and accumulation in context by modeling cardiac output. They use an interactive Java applet to create a graph of the data they collect.
Standard(s): [S1] A&P (912) 9: Identify structures and functions of the cardiovascular system. [MA2013] AL1 (912) 42: Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. [SID2] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] ALT (912) 37: Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve. [SID4]
Subject: Health,Mathematics Title: Gather Data
Description: In this lesson, one of a multipart unit from Illuminations, students explore rates of change and accumulation in context by modeling cardiac output. They use an interactive Java applet to create a graph of the data they collect. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: Least Squares Regression
Description:
In this ninelesson unit, from Illuminations, students interpret the slope and yintercept of least squares regression lines in the context of reallife data. Students use an interactive applet to plot the data and calculate the correlation coefficient and equation of the least squares regression line. These lessons develop skills in connecting, communicating, reasoning, and problem solving as well as representing fundamental ideas about data.
Standard(s): [MA2013] (8) 14: Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of linear function in terms of the situation it models and in terms of its graph or a table of values. [8F4] [MA2013] (8) 25: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. [8SP1] [MA2013] (8) 26: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. [8SP2] [MA2013] (8) 27: Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. [8SP3] [MA2013] (8) 28: Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a twoway table. Construct and interpret a twoway table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. [8SP4] [MA2013] AL1 (912) 13: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] AL1 (912) 30: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 37: Distinguish between situations that can be modeled with linear functions and with exponential functions. [FLE1] [MA2013] AL1 (912) 38: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). [FLE2] [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6] [MA2013] AL1 (912) 46: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. [SID7] [MA2013] PRE (912) 42: Compute (using technology) and interpret the correlation coefficient of a linear fit. [SID8] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] AL2 (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL2 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] ALT (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] ALT (912) 22: Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. [ACED3] [MA2013] PRE (912) 16: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. (Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Determine odd, even, neither.)* [FIF4] (Alabama) [MA2013] ALT (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] PRE (912) 17: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] ALT (912) 33: Write a function that describes a relationship between two quantities.* [FBF1]
Subject: Mathematics Title: Least Squares Regression
Description: In this ninelesson unit, from Illuminations, students interpret the slope and yintercept of least squares regression lines in the context of reallife data. Students use an interactive applet to plot the data and calculate the correlation coefficient and equation of the least squares regression line. These lessons develop skills in connecting, communicating, reasoning, and problem solving as well as representing fundamental ideas about data. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: The Effects of Outliers
Description:
This lesson, one of a multipart unit from Illuminations, provides students with the opportunity to investigate the relationship between a set of data points and a curve used to fit the data points, using a computerbased interactive tool. Using the Regression Line Applet, students investigate the effect of outliers on a regression line and easily see their significance.
Standard(s): [MA2013] (8) 25: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. [8SP1] [MA2013] (8) 26: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. [8SP2] [MA2013] (8) 28: Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a twoway table. Construct and interpret a twoway table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. [8SP4] [MA2013] AL1 (912) 13: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] AL1 (912) 30: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 37: Distinguish between situations that can be modeled with linear functions and with exponential functions. [FLE1] [MA2013] AL1 (912) 38: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). [FLE2] [MA2013] AL1 (912) 40: Interpret the parameters in a linear or exponential function in terms of a context. [FLE5] [MA2013] AL1 (912) 43: Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). [SID3] [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6] [MA2013] AL1 (912) 46: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. [SID7] [MA2013] PRE (912) 42: Compute (using technology) and interpret the correlation coefficient of a linear fit. [SID8] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] AL2 (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL2 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] ALT (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] PRE (912) 16: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. (Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Determine odd, even, neither.)* [FIF4] (Alabama) [MA2013] ALT (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] PRE (912) 17: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] ALT (912) 33: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] PRE (912) 44: Understand statistics as a process for making inferences about population parameters based on a random sample from that population. [SIC1]
Subject: Mathematics Title: The Effects of Outliers
Description: This lesson, one of a multipart unit from Illuminations, provides students with the opportunity to investigate the relationship between a set of data points and a curve used to fit the data points, using a computerbased interactive tool. Using the Regression Line Applet, students investigate the effect of outliers on a regression line and easily see their significance. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: Traveling Distances
Description:
In this lesson, one of a multipart unit from Illuminations, students interpret the meaning of the slope and yintercept of a graph of reallife data. By examining the graphical representation of the data, students relate the slope and yintercept of the least squares regression line to the reallife data. They also interpret the correlation coefficient of the resulting least squares regression line. This lesson incorporates an interactive regression line applet.
Standard(s): [MA2013] (8) 25: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. [8SP1] [MA2013] (8) 26: Know that straight lines are widely used to model relationships between two quantitative variables. For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. [8SP2] [MA2013] (8) 27: Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. [8SP3] [MA2013] (8) 28: Understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a twoway table. Construct and interpret a twoway table summarizing data on two categorical variables collected from the same subjects. Use relative frequencies calculated for rows or columns to describe possible association between the two variables. [8SP4] [MA2013] AL1 (912) 13: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] AL1 (912) 30: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 37: Distinguish between situations that can be modeled with linear functions and with exponential functions. [FLE1] [MA2013] AL1 (912) 38: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). [FLE2] [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6] [MA2013] AL1 (912) 46: Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data. [SID7] [MA2013] PRE (912) 42: Compute (using technology) and interpret the correlation coefficient of a linear fit. [SID8] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama) [MA2013] AL2 (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL2 (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] ALT (912) 21: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] PRE (912) 16: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. (Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Determine odd, even, neither.)* [FIF4] (Alabama) [MA2013] ALT (912) 29: Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes.* [FIF5] [MA2013] PRE (912) 17: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] ALT (912) 33: Write a function that describes a relationship between two quantities.* [FBF1]
Subject: Mathematics Title: Traveling Distances
Description: In this lesson, one of a multipart unit from Illuminations, students interpret the meaning of the slope and yintercept of a graph of reallife data. By examining the graphical representation of the data, students relate the slope and yintercept of the least squares regression line to the reallife data. They also interpret the correlation coefficient of the resulting least squares regression line. This lesson incorporates an interactive regression line applet. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: Road Rage
Description:
In this Illuminations lesson, students use remotecontrolled cars to create a system of equations. The solution of the system corresponds to the cars crashing. Multiple representations are woven together throughout the lesson, using graphs, scatter plots, equations, tables, and technological tools. Students calculate the time and place of the crash mathematically, and then test the results by crashing the cars into each other.
Standard(s): [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6] [MA2013] PRE (912) 42: Compute (using technology) and interpret the correlation coefficient of a linear fit. [SID8] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama)
Subject: Mathematics Title: Road Rage
Description: In this Illuminations lesson, students use remotecontrolled cars to create a system of equations. The solution of the system corresponds to the cars crashing. Multiple representations are woven together throughout the lesson, using graphs, scatter plots, equations, tables, and technological tools. Students calculate the time and place of the crash mathematically, and then test the results by crashing the cars into each other. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Save to ALEX 
Share

Show Details
Title: On Top of the World
Description:
If you were standing on the top of Mount Everest, how far would you be able to see to the horizon? In this lesson, students will consider two different strategies for finding an answer to this question. The first strategy is algebraicstudents use data about the distance to the horizon from various heights to generate a rule. The second strategy is geometricstudents use the radius of the Earth and right triangle relationships to construct a formula. Then, students compare the two different rules based on ease of use as well as accuracy.
Standard(s): [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6] [MA2013] ALC (912) 8: Determine missing information in an applicationbased situation using properties of right triangles, including trigonometric ratios and the Pythagorean Theorem. (Alabama) [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama)
Subject: Mathematics Title: On Top of the World
Description: If you were standing on the top of Mount Everest, how far would you be able to see to the horizon? In this lesson, students will consider two different strategies for finding an answer to this question. The first strategy is algebraicstudents use data about the distance to the horizon from various heights to generate a rule. The second strategy is geometricstudents use the radius of the Earth and right triangle relationships to construct a formula. Then, students compare the two different rules based on ease of use as well as accuracy. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Web Resources
Lesson Plans
Save to ALEX 
Share

Show Details
Title: Determining Functions Using Regression
Description:
Students will determine the function of best fit for a set of data and recognize which category of function bests fit the data and know how to use technology to obtain a function. This lesson teaches these skills and prepares students for the subsequent lesson(s), in which they will collect their own data.
Standard(s): [MA2013] AL1 (912) 30: Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* [FIF6] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama)
Determining Functions Using Regression
http://illuminations...
Students will determine the function of best fit for a set of data and recognize which category of function bests fit the data and know how to use technology to obtain a function. This lesson teaches these skills and prepares students for the subsequent lesson(s), in which they will collect their own data.
Thinkfinity Interactive Games
Save to ALEX 
Share

Show Details
Title: Understanding the Least Squares Regression Line with a Visual Model: Measuring Error in a Linear Model
Description:
This example from Illuminations allows students to explore three methods for measuring how well a linear model fits a set of data points. In this example, two of the methods use residuals and the third uses the shortest distance between a data point and the line given by the model. eMath Investigations are selected eexamples from the electronic version of the Principles and Standards of School Mathematics (PSSM). The eexamples are part of the electronic version of the PSSM document. Given their interactive nature and focused discussion tied to the PSSM document, the eexamples are natural companions to the iMath investigations.
Standard(s): [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama)
Subject: Mathematics Title: Understanding the Least Squares Regression Line with a Visual Model: Measuring Error in a Linear Model
Description: This example from Illuminations allows students to explore three methods for measuring how well a linear model fits a set of data points. In this example, two of the methods use residuals and the third uses the shortest distance between a data point and the line given by the model. eMath Investigations are selected eexamples from the electronic version of the Principles and Standards of School Mathematics (PSSM). The eexamples are part of the electronic version of the PSSM document. Given their interactive nature and focused discussion tied to the PSSM document, the eexamples are natural companions to the iMath investigations. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12
Thinkfinity Learning Activities
Save to ALEX 
Share

Show Details
Title: Line of Best Fit
Description:
This student interactive, from Illuminations, allows the user to enter a set of data, plot the data on a coordinate grid, and determine the equation for a line of best fit. Students can choose to display a line of best fit based on their visual approximation as well as a computergenerated leastsquares regression line.
Standard(s): [MA2013] AL1 (912) 45: Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. [SID6] [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama)
Subject: Mathematics Title: Line of Best Fit
Description: This student interactive, from Illuminations, allows the user to enter a set of data, plot the data on a coordinate grid, and determine the equation for a line of best fit. Students can choose to display a line of best fit based on their visual approximation as well as a computergenerated leastsquares regression line. Thinkfinity Partner: Illuminations Grade Span: 6,7,8,9,10,11,12
Save to ALEX 
Share

Show Details
Title: Flowing Through Mathematics
Description:
This student interactive, from Illuminations, simulates water flowing from a tube through a hole in the bottom. The diameter of the hole can be adjusted and data can be gathered for the height or volume of water in the tube at any time.
Standard(s): [MA2013] AL1 (912) 13: Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. [ACED2] [MA2013] AL1 (912) 28: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* [FIF4] [MA2013] AL1 (912) 31: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* [FIF7] [MA2013] AL1 (912) 32: Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. [FIF8] [MA2013] AL1 (912) 34: Write a function that describes a relationship between two quantities.* [FBF1] [MA2013] AL1 (912) 37: Distinguish between situations that can be modeled with linear functions and with exponential functions. [FLE1] [MA2013] AL1 (912) 38: Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two inputoutput pairs (include reading these from a table). [FLE2] [MA2013] GEO (912) 36: Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.* [GGMD3] [MA2013] GEO (912) 39: Use geometric shapes, their measures, and their properties to describe objects (e.g., modeling a tree trunk or a human torso as a cylinder).* [GMG1] [MA2013] GEO (912) 40: Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, British Thermal Units (BTUs) per cubic foot).* [GMG2] [MA2013] ALC (912) 3: Use formulas or equations of functions to calculate outcomes of exponential growth or decay. (Alabama) [MA2013] ALC (912) 12: Create a model of a set of data by estimating the equation of a curve of best fit from tables of values or scatter plots. (Alabama)
Subject: Mathematics Title: Flowing Through Mathematics
Description: This student interactive, from Illuminations, simulates water flowing from a tube through a hole in the bottom. The diameter of the hole can be adjusted and data can be gathered for the height or volume of water in the tube at any time. Thinkfinity Partner: Illuminations Grade Span: 9,10,11,12

