ALEX Resources

Narrow Results:
Learning Activities (1) Building blocks of a lesson plan that include before, during, and after strategies to actively engage students in learning a concept or skill. Classroom Resources (8)


ALEX Learning Activities  
   View Standards     Standard(s): [ELA2015] (6) 35 :
35 ) Include multimedia components (e.g., graphics, images, music, sound) and visual displays in presentations to clarify information. [SL.6.5]

[ELA2015] (7) 34 :
34 ) Include multimedia components and visual displays in presentations to clarify claims and findings and emphasize salient points. [SL.7.5]

[MA2019] (6) 24 :
24. Represent numerical data graphically, using dot plots, line plots, histograms, stem and leaf plots, and box plots.

a. Analyze the graphical representation of data by describing the center, spread, shape (including approximately symmetric or skewed), and unusual features (including gaps, peaks, clusters, and extreme values).

b. Use graphical representations of real-world data to describe the context from which they were collected.
[MA2019] (6) 23 :
23. Calculate, interpret, and compare measures of center (mean, median, mode) and variability (range and interquartile range) in real-world data sets.

a. Determine which measure of center best represents a real-world data set.

b. Interpret the measures of center and variability in the context of a problem.
[MA2019] REG-7 (7) 10 :
10. Examine a sample of a population to generalize information about the population.

a. Differentiate between a sample and a population.

b. Compare sampling techniques to determine whether a sample is random and thus representative of a population, explaining that random sampling tends to produce representative samples and support valid inferences.

c. Determine whether conclusions and generalizations can be made about a population based on a sample.

d. Use data from a random sample to draw inferences about a population with an unknown characteristic of interest, generating multiple samples to gauge variation and making predictions or conclusions about the population.

e. Informally explain situations in which statistical bias may exist.
[MA2015] (7) 18 :
18 ) Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. [7-SP2]

Example: Estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be.

[DLIT] (6) 5 :
R5) Locate and curate information from digital sources to answer research questions.

[DLIT] (6) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (6) 29 :
23) Discuss how digital devices may be used to collect, analyze, and present information.

[DLIT] (7) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 29 :
23) Demonstrate the use of a variety of digital devices individually and collaboratively to collect, analyze, and present information for content-related problems.

Subject: English Language Arts (6 - 7), Mathematics (6 - 7), Mathematics (7), Digital Literacy and Computer Science (6 - 7)
Title: Infograms: Show Your Data!
Description:

Infogram allows you to easily take data and create infographics. Use charts as well as pictures to display data into an easy to read and understand and attractive digital poster that can be displayed alone or embedded into a website.




ALEX Learning Activities: 1

Go To Top of page
ALEX Classroom Resources  
   View Standards     Standard(s): [DLIT] (6) 1 :
R1) Identify, demonstrate, and apply personal safe use of digital devices.

[DLIT] (6) 29 :
23) Discuss how digital devices may be used to collect, analyze, and present information.

Subject: Digital Literacy and Computer Science (6)
Title: Don't Feed the Phish
URL: https://www.commonsense.org/education/digital-citizenship/lesson/dont-feed-the-phish
Description:

Internet scams are part of being online today, but many kids might not be aware of them. How do we help our students avoid being tricked into clicking malicious links or giving out private information? Use this lesson to help kids avoid online identity theft and phishing schemes.

Students will be able to:
  • compare and contrast identity theft with other kinds of theft.
  • describe different ways that identity theft can occur online.
  • use message clues to identify examples of phishing.

Users will need to create a free account to access this resource. 



   View Standards     Standard(s): [DLIT] (6) 5 :
R5) Locate and curate information from digital sources to answer research questions.

[DLIT] (6) 22 :
16) Communicate and/or publish collaboratively to inform others from a variety of backgrounds and cultures about issues and problems.

[DLIT] (6) 25 :
19) Track data change from a variety of sources.

Example: Use editing or versioning tools to track changes to data.

[DLIT] (6) 29 :
23) Discuss how digital devices may be used to collect, analyze, and present information.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 5 :
R5) Locate and curate information from digital sources to answer research questions.

[DLIT] (7) 29 :
23) Demonstrate the use of a variety of digital devices individually and collaboratively to collect, analyze, and present information for content-related problems.

[DLIT] (7) 33 :
27) Identify data needed to create a model or simulation of a given event.

Examples: When creating a random name generator, the program needs access to a list of possible names.

[DLIT] (8) 5 :
R5) Locate and curate information from digital sources to answer research questions.

[DLIT] (8) 23 :
17) Communicate and publish individually or collaboratively to persuade peers, experts, or community about issues and problems.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Visual Learning
URL: https://www.remc.org/21Things4Students/21/2-visual-learning/
Description:

As part of this activity, you will be learning how to create visual organizers and how to create and use QR codes in learning.


LEARNING OBJECTIVES

When you have completed this Thing you will:

  1. Know how to set a personal learning goal and reflect on my progress [Empowered Learner]

  2. Be able to organize and manage information [Knowledge Constructor]

  3. Understand how to use a scientific design process to collect and analyze information [Innovative Designer]

  4. Be able to express myself and share my ideas and work digitally [Creative Communicator]

  5. Be able to collaborate with a group to create an original design [Creative Communicator, Innovative Designer]



   View Standards     Standard(s): [DLIT] (6) 21 :
15) Identify emerging technologies in computing.

[DLIT] (6) 29 :
23) Discuss how digital devices may be used to collect, analyze, and present information.

[DLIT] (7) 20 :
14) Discuss current events related to emerging technologies in computing and the effects such events have on individuals and the global society.

[DLIT] (7) 33 :
27) Identify data needed to create a model or simulation of a given event.

Examples: When creating a random name generator, the program needs access to a list of possible names.

[DLIT] (8) 20 :
14) Analyze current events related to computing and their effects on education, the workplace, individuals, communities, and global society.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 6 Chapter 1 Lesson 1: Innovations in Computing (18-19)
URL: https://studio.code.org/s/csd6-2018/stage/1/puzzle/1?section_id=1888730
Description:

Students will explore a wide variety of new and innovative computing platforms while expanding their understanding of what a computer can be.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 29 :
23) Discuss how digital devices may be used to collect, analyze, and present information.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 33 :
27) Identify data needed to create a model or simulation of a given event.

Examples: When creating a random name generator, the program needs access to a list of possible names.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 6 Chapter 1 Lesson 8: The Program Design Process (18-19)
URL: https://studio.code.org/s/csd6-2018/stage/8/puzzle/1
Description:

Students will use the design circuit boards and create an app of their own design.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (6) 11 :
5) Identify algorithms that make use of sequencing, selection or iteration.

Examples: Sequencing is doing steps in order (put on socks, put on shoes, tie laces); selection uses a Boolean condition to determine which of two parts of an algorithm are used (hair is dirty? True, wash hair; false, do not); iteration is the repetition of part of an algorithm until a condition is met (if you're happy and you know it clap your hands, when you're no longer happy you stop clapping).

[DLIT] (6) 12 :
6) Identify steps in developing solutions to complex problems using computational thinking.

[DLIT] (6) 14 :
8) Create a program that initializes a variable.

Example: Create a flowchart in which the variable or object returns to a starting position upon completion of a task.

[DLIT] (6) 29 :
23) Discuss how digital devices may be used to collect, analyze, and present information.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (7) 7 :
1) Create a function to simplify a task.

Example: Get a writing utensil, get paper, jot notes can collectively be named "note taking".

[DLIT] (7) 8 :
2) Create complex pseudocode using conditionals and Boolean statements.

Example: Automated vacuum pseudocode — drive forward until the unit encounters an obstacle; reverse 2"; rotate 30 degrees to the left, repeat.

[DLIT] (7) 9 :
3) Create algorithms that demonstrate sequencing, selection or iteration.

Examples: Debit card transactions are approved until the account balance is insufficient to fund the transaction = iteration, do until.

[DLIT] (7) 11 :
5) Solve a complex problem using computational thinking.

[DLIT] (7) 12 :
6) Create and organize algorithms in order to automate a process efficiently.

Example: Set of recipes (algorithms) for preparing a complete meal.

[DLIT] (7) 13 :
7) Create a program that updates the value of a variable in the program.

Examples: Update the value of score when a coin is collected (in a flowchart, pseudocode or program).

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 23 :
17) Publish content to be available for external feedback.

[DLIT] (7) 33 :
27) Identify data needed to create a model or simulation of a given event.

Examples: When creating a random name generator, the program needs access to a list of possible names.

[DLIT] (8) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (8) 7 :
1) Design a function using a programming language that demonstrates abstraction.

Example: Create a program that utilizes functions in an effort remove repetitive sequences of steps.

[DLIT] (8) 9 :
3) Create an algorithm using a programming language that includes the use of sequencing, selections, or iterations.

Example: Use a block-based or script programming language
Step 1: Start
Step 2: Declare variables a, b and c.
Step 3: Read variables a, b and c.
Step 4: If a>b
      If a>c
         Display a is the largest number.
     Else
         Display c is the largest number.
   Else
      If b>c
         Display b is the largest number.
      Else
         Display c is the greatest number.
Step 5: Stop

[DLIT] (8) 10 :
4) Create a function to simplify a task.

Example: 38 = 3*3*3*3*3*3*3*3; =(Average) used in a spreadsheet to average a given list of grades.

[DLIT] (8) 13 :
7) Create a program that includes selection, iteration, or abstraction, and initializes, and updates, at least two variables.

Examples: Make a game, interactive card, story, or adventure game.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 6 Chapter 1 Lesson 9: Make a Game (18-19)
URL: https://studio.code.org/s/csd6-2018/stage/9/puzzle/1
Description:

Students take what they've learned through Unit 6 Chapter 1 and develop an app of their own design that uses the circuit board to output information.

Note: You will need to create a free account on code.org before you can view this resource. 



   View Standards     Standard(s): [DLIT] (6) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (6) 9 :
3) Create pseudocode that uses conditionals.

Examples: Using if/then/else (If it is raining then bring an umbrella else get wet).

[DLIT] (6) 14 :
8) Create a program that initializes a variable.

Example: Create a flowchart in which the variable or object returns to a starting position upon completion of a task.

[DLIT] (6) 29 :
23) Discuss how digital devices may be used to collect, analyze, and present information.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (7) 8 :
2) Create complex pseudocode using conditionals and Boolean statements.

Example: Automated vacuum pseudocode — drive forward until the unit encounters an obstacle; reverse 2"; rotate 30 degrees to the left, repeat.

[DLIT] (7) 9 :
3) Create algorithms that demonstrate sequencing, selection or iteration.

Examples: Debit card transactions are approved until the account balance is insufficient to fund the transaction = iteration, do until.

[DLIT] (7) 10 :
4) Design a complex algorithm that contains sequencing, selection or iteration.

Examples: Lunch line algorithm that contains parameters for bringing your lunch and multiple options available in the lunch line.

[DLIT] (7) 11 :
5) Solve a complex problem using computational thinking.

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 33 :
27) Identify data needed to create a model or simulation of a given event.

Examples: When creating a random name generator, the program needs access to a list of possible names.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (8) 7 :
1) Design a function using a programming language that demonstrates abstraction.

Example: Create a program that utilizes functions in an effort remove repetitive sequences of steps.

[DLIT] (8) 13 :
7) Create a program that includes selection, iteration, or abstraction, and initializes, and updates, at least two variables.

Examples: Make a game, interactive card, story, or adventure game.

[DLIT] (8) 29 :
23) Design a digital artifact to propose a solution for a content-related problem.

Example: Create a presentation outlining how to create a cost-efficient method to melt snow on roads during the winter.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 6 Chapter 2 Lesson 16: Prototype an Innovation (18-19)
URL: https://studio.code.org/s/csd6-2018/stage/16/puzzle/1?section_id=1888730
Description:

Students, working with a partner or team will brainstorm physical devices they wish to prototype. Students have the option to design a new creation or recreate a device they have found in the "real world". Students will complete a planning guide to determine the resources (physical and digital) they will need to create their prototype. Students will design a user interface (typically an app or circuit board) that may control some output device (like a circuit board). It will be necessary for students to develop pseudocode or algorithms to aid in the coding process. Students will need to complete the problem-solving process during this lesson plan which will include testing a revising the prototype.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 29 :
23) Discuss how digital devices may be used to collect, analyze, and present information.

[DLIT] (7) 21 :
15) Discuss unique perspectives and needs of a global culture when developing computational artifacts, including options for accessibility for all users.

Example: Would students create a webpage aimed at reaching a village of users that have no way access to the Internet?

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (8) 22 :
16) Present content designed for specific audiences through an appropriate medium.

Example: Create and share a help video for a senior's center that provides tips for online safety.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 4 Chapter 1 Lesson 7: Project - Paper Prototype (18-19)
URL: https://studio.code.org/s/csd4-2018/stage/7/puzzle/1
Description:

Using the interview information from the previous lesson, the class comes up with app ideas to address the needs of their users. To express those ideas and test out their effectiveness, each student creates and tests paper prototypes of their own.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 29 :
23) Discuss how digital devices may be used to collect, analyze, and present information.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 11 :
5) Solve a complex problem using computational thinking.

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 35 :
29) Compare and contrast human intelligence and artificial intelligence.

[DLIT] (8) 22 :
16) Present content designed for specific audiences through an appropriate medium.

Example: Create and share a help video for a senior's center that provides tips for online safety.

[DLIT] (8) 29 :
23) Design a digital artifact to propose a solution for a content-related problem.

Example: Create a presentation outlining how to create a cost-efficient method to melt snow on roads during the winter.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 1 Chapter 2 Lesson 8: Propose an App
URL: https://studio.code.org/s/csd1-2018/stage/8/puzzle/1
Description:

To conclude the study of the problem-solving process and the input/output/store/process model of a computer, the class proposes apps designed to solve real-world problems. This project is completed across multiple days and culminates in a poster presentation highlighting the features of each app. The project is designed to be completed in pairs though it can be completed individually.

Note: You will need to create a free account on code.org before you can view this resource.



ALEX Classroom Resources: 8

Go To Top of page