ALEX Resources

Narrow Results:
Learning Activities (1) Building blocks of a lesson plan that include before, during, and after strategies to actively engage students in learning a concept or skill. Classroom Resources (18)


ALEX Learning Activities  
   View Standards     Standard(s): [MA2019] REG-7 (7) 4 :
4. Apply and extend knowledge of operations of whole numbers, fractions, and decimals to add, subtract, multiply, and divide rational numbers including integers, signed fractions, and decimals.

a. Identify and explain situations where the sum of opposite quantities is 0 and opposite quantities are defined as additive inverses.

b. Interpret the sum of two or more rational numbers, by using a number line and in real-world contexts.

c. Explain subtraction of rational numbers as addition of additive inverses.

d. Use a number line to demonstrate that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts.

e. Extend strategies of multiplication to rational numbers to develop rules for multiplying signed numbers, showing that the properties of the operations are preserved.

f. Divide integers and explain that division by zero is undefined. Interpret the quotient of integers (with a non-zero divisor) as a rational number.

g. Convert a rational number to a decimal using long division, explaining that the decimal form of a rational number terminates or eventually repeats.
[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

Subject: Mathematics (7), Digital Literacy and Computer Science (7)
Title: Using Number Lines to Model Real-World Problems
Description:

In this activity, students will compute real-world problems with rational numbers while using a digital number line. Students are provided a sample problem to work through to become familiar with the digital number line. Since problems can be solved using multiple methods, students are asked to provide a number sentence to represent their number line model as well as the solution to the problem. Through the online digital tool, students can also share a link to their work with their teacher or classmates. This provides a great opportunity for students to investigate how to solve problems using multiple methods.

Using Number Lines to Model Real-World Problems Student Response Page




ALEX Learning Activities: 1

Go To Top of page
ALEX Classroom Resources  
   View Standards     Standard(s): [DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 11 :
5) Discuss the efficiency of an algorithm or technology used to solve complex problems.

Subject: Digital Literacy and Computer Science (7 - 8)
Title: How Do Algorithms Predict Criminal Behavior?
URL: https://aptv.pbslearningmedia.org/resource/criminal-justice-kqed/how-do-algorithms-predict-criminal-behavior-above-the-noise/support-materials/
Description:

It’s no big secret that the United States has a prison problem. We lock up people at higher rates than any other nation, and there are huge racial disparities in who we lock up. According to a study from The Sentencing Project, in state prisons, African Americans are incarcerated 5 times more than whites. There are lots of reasons why we may see these racial disparities, including law enforcement practices, crime rates, and punitive sentencing policies. Keeping so many people in prison is really expensive-- it costs about $80 billion dollars a year-- and it contributes to racial inequalities in America. As a result, there’s a big push among both Democrats and Republicans to reform our prison system. And one popular strategy many people advocate for as part of this reform effort is risk assessment tools. The tools use data to predict whether a person will commit a future crime. This video explores how these tools work and some of the controversy surrounding their use. This video comes with a student viewing guide.



   View Standards     Standard(s): [DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 29 :
23) Design a digital artifact to propose a solution for a content-related problem.

Example: Create a presentation outlining how to create a cost-efficient method to melt snow on roads during the winter.

[DLIT] (8) 31 :
25) Create a model that represents a system.

Example: Food chain, supply and demand.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Design Thinking
URL: https://www.remc.org/21Things4Students/21/15-design-thinking/
Description:

Design Thinking is a process for designing something to solve a problem. It shares a lot of similarities to the Engineering Design Process you might learn in a STEM class and the Scientific Method you learn in science. However, it tends to work really well with creating solutions to problems that impact humans, also known as Human-Centered Design

In this activity, you’ll work with a team to identify a problem, come up with ideas to solve it, make a prototype of your best idea, test it out and ultimately share it. Your goal is to make a positive impact on the problem you choose.


LEARNING OBJECTIVES

When you have completed this activity you will:

  1. be able to use research skills to understand real-world problems and develop ideas to solve them [Innovative Designer, Knowledge Constructor]

  2. know how to use a design process to solve a problem [Innovative Designer]

  3. be able to create and test prototypes to improve on a design [Innovative Designer]

  4. be able to choose appropriate tools to organize and manage a process with team members [Innovative Designer, Global Collaborator]

  5. be able to choose appropriate tools to share my ideas with a target audience [Innovative Designer, Creative Communicator]

  6. understand Tinkercad design software basics [Empowered Learner]

  7. know how to use Tinkercad software to design their own invention that solves a problem or changes how we interact with the world [Innovative Designer]

  8. know that technology is something that solves a problem or changes how we interact with the world [Knowledge Constructor]



   View Standards     Standard(s): [DLIT] (6) 7 :
1) Remove background details from an everyday process to highlight essential properties.

Examples: When making a sandwich, the type of bread, condiments, meats, and/or vegetables do not affect the fact that one is making a sandwich.

[DLIT] (6) 12 :
6) Identify steps in developing solutions to complex problems using computational thinking.

[DLIT] (6) 13 :
7) Describe how automation works to increase efficiency.

Example: Compare the amount of time/work to hand wash a car vs. using an automated car wash.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 11 :
5) Solve a complex problem using computational thinking.

[DLIT] (7) 12 :
6) Create and organize algorithms in order to automate a process efficiently.

Example: Set of recipes (algorithms) for preparing a complete meal.

[DLIT] (7) 14 :
8) Formulate a narrative for each step of a process and its intended result, given pseudocode or code.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 8 :
2) Explain how abstraction is used in a given function.

Example: Examine a set of block-based code and explain how abstraction was used.

[DLIT] (8) 11 :
5) Discuss the efficiency of an algorithm or technology used to solve complex problems.

[DLIT] (8) 12 :
6) Describe how algorithmic processes and automation increase efficiency.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computational Thinking
URL: https://www.remc.org/21Things4Students/21/21-computational-thinking/
Description:

Have you ever had a complex problem that you needed to solve? This could be a math problem, science experiment, an essay you need to write, and coding and game design. It could even be as simple as planning the best route to school or baking your favorite cookies!

Computational thinking can be used to take a complex problem, understand what the problem is and develop possible solutions to solve or explain it.

Students will complete Quests to learn about the four stages of computational thinking:


LEARNING OBJECTIVES:

When you have completed this activity you will:

  1. understand computational thinking [Computational Thinker]
     
  2. be able to solve complex problems using computational thinking. [Computational Thinker]

  3. be able to break down a problem into smaller more manageable parts. [Computational Thinker]

  4. know how to look for patterns and sequences. [Computational Thinker]

  5. be able to focus on important information only. [Computational Thinker]

  6. be able to develop a step-by-step solution to the problem. [Computational Thinker]

  7. know how to use coding to automate a task [Computational Thinker]

  8. understand computational design by applying technology to a problem [Innovative Designer]

  9. understand programming as you complete hands-on activities, solving problems encountered [Computational Thinker]

  10. understand the coding your program creates [Empowered Learner]



   View Standards     Standard(s): [DLIT] (6) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (7) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Digital Storytelling
URL: https://www.remc.org/21Things4Students/21/18-digital-storytelling/
Description:

Digital storytelling is one of the greatest ways to share and present your story using a variety of media to enhance it. Digital stories can include images, photos, audio, and video. Your task in this Thing is to research digital story examples and think about the story you want to tell. You will also begin to think about the media you might want to use.

LEARNING OBJECTIVES

When you have completed this activity you will:

  1. know and use a process for creating a digital story [Innovative Designer]
  2. be able to select and use the appropriate digital tool(s) [Digital Citizen, Empowered learner]
  3. understand how to use a Storyboard to build and organize your story elements [Computational Thinker]
  4. participate in constructive peer feedback to improve the end product to be shared [Creative Communicator]
  5. create an original story with different media elements [Knowledge Constructor]



   View Standards     Standard(s): [DLIT] (4) 11 :
5) Use flowcharts to create a plan or algorithm.

[DLIT] (4) 27 :
21) Develop, test, and refine prototypes as part of a cyclical design process to solve a simple problem.

[DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 9 :
3) Create an algorithm that is defined by simple pseudocode.

[DLIT] (5) 11 :
5) Develop and recommend solutions to a given problem and explain the process to an audience.

[DLIT] (5) 34 :
28) Develop, test, and refine prototypes as part of a cyclical design process to solve a complex problem.

Examples: Design backpack for a specific user's needs; design a method to collect and transport water without the benefit of faucets; design boats that need to hold as much payload as possible before sinking; design models of chairs based on specific user needs.

[DLIT] (7) 11 :
5) Solve a complex problem using computational thinking.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

Subject: Digital Literacy and Computer Science (4 - 7)
Title: Minimal Spanning Trees
URL: https://classic.csunplugged.org/minimal-spanning-trees/
Description:

Networks are everywhere in modern society: roads, wires, water and gas pipes all connect one place to another. Computers are built of networks at many levels, from the microscopic connections between transistors in a chip to the cables and satellites that link the internet around the world. People who build networks often need to work out the most efficient way to make connections, which can be a difficult problem.

This puzzle shows students the decisions involved in linking a network between houses in a muddy city. It can lead to a discussion of minimal spanning tree algorithms for optimizing networks.



   View Standards     Standard(s): [DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

Subject: Digital Literacy and Computer Science (7)
Title: Computer Science Discoveries Unit 5 Chapter 2 Lesson 9: Problem Solving and Data (18-19)
URL: https://studio.code.org/s/csd5-2018/stage/9/puzzle/1?section_id=1888730
Description:

In this lesson, students use the problem-solving process from earlier in the course to solve a data problem. After reviewing the process, the class is presented with a decision: whether a city should build a library, pet shelter, or fire department. Students work in teams to collect information on the Internet to help them decide what should be built, then use this information to build an argument that will convince the city council of their choice. They map what they have done within the problem-solving process that they have been using throughout the course, comparing the general problem-solving process to its specific application to data problems.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 29 :
23) Discuss how digital devices may be used to collect, analyze, and present information.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 33 :
27) Identify data needed to create a model or simulation of a given event.

Examples: When creating a random name generator, the program needs access to a list of possible names.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 6 Chapter 1 Lesson 8: The Program Design Process (18-19)
URL: https://studio.code.org/s/csd6-2018/stage/8/puzzle/1
Description:

Students will use the design circuit boards and create an app of their own design.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (7) 14 :
8) Formulate a narrative for each step of a process and its intended result, given pseudocode or code.

[DLIT] (7) 33 :
27) Identify data needed to create a model or simulation of a given event.

Examples: When creating a random name generator, the program needs access to a list of possible names.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 11 :
5) Discuss the efficiency of an algorithm or technology used to solve complex problems.

Subject: Digital Literacy and Computer Science (7 - 8)
Title: Computer Science Discoveries Unit 6 Chapter 2 Lesson 15: Circuits and Physical Prototypes (18-19)
URL: https://studio.code.org/s/csd6-2018/stage/15/puzzle/1
Description:

Students will plan, design, and create a physical prototype using block programming to control simple wire circuits using cheap and easily found materials.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 33 :
27) Identify data needed to create a model or simulation of a given event.

Examples: When creating a random name generator, the program needs access to a list of possible names.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 5 Chapter 2 Lesson 15: Project - Solve a Data Problem (18-19)
URL: https://studio.code.org/s/csd5-2018/stage/15/puzzle/1?section_id=1888730
Description:

To conclude this unit, students design a recommendation engine based on data that they collect and analyze from their classmates. After looking at an example of a recommendation app, students follow a project guide to complete this multi-day activity. In the first several steps, students choose what choice they want to help the user to make, what data they need to give the recommendation, create a survey, and collect information about their classmates' choices. They then interpret the data and use what they have learned to create the recommendation algorithm. Last, they use their algorithms to make recommendations to a few classmates. Students perform a peer review and make any necessary updates to their projects before preparing a presentation to the class.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (6) 9 :
3) Create pseudocode that uses conditionals.

Examples: Using if/then/else (If it is raining then bring an umbrella else get wet).

[DLIT] (6) 14 :
8) Create a program that initializes a variable.

Example: Create a flowchart in which the variable or object returns to a starting position upon completion of a task.

[DLIT] (6) 29 :
23) Discuss how digital devices may be used to collect, analyze, and present information.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (7) 8 :
2) Create complex pseudocode using conditionals and Boolean statements.

Example: Automated vacuum pseudocode — drive forward until the unit encounters an obstacle; reverse 2"; rotate 30 degrees to the left, repeat.

[DLIT] (7) 9 :
3) Create algorithms that demonstrate sequencing, selection or iteration.

Examples: Debit card transactions are approved until the account balance is insufficient to fund the transaction = iteration, do until.

[DLIT] (7) 10 :
4) Design a complex algorithm that contains sequencing, selection or iteration.

Examples: Lunch line algorithm that contains parameters for bringing your lunch and multiple options available in the lunch line.

[DLIT] (7) 11 :
5) Solve a complex problem using computational thinking.

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 33 :
27) Identify data needed to create a model or simulation of a given event.

Examples: When creating a random name generator, the program needs access to a list of possible names.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (8) 7 :
1) Design a function using a programming language that demonstrates abstraction.

Example: Create a program that utilizes functions in an effort remove repetitive sequences of steps.

[DLIT] (8) 13 :
7) Create a program that includes selection, iteration, or abstraction, and initializes, and updates, at least two variables.

Examples: Make a game, interactive card, story, or adventure game.

[DLIT] (8) 29 :
23) Design a digital artifact to propose a solution for a content-related problem.

Example: Create a presentation outlining how to create a cost-efficient method to melt snow on roads during the winter.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 6 Chapter 2 Lesson 16: Prototype an Innovation (18-19)
URL: https://studio.code.org/s/csd6-2018/stage/16/puzzle/1?section_id=1888730
Description:

Students, working with a partner or team will brainstorm physical devices they wish to prototype. Students have the option to design a new creation or recreate a device they have found in the "real world". Students will complete a planning guide to determine the resources (physical and digital) they will need to create their prototype. Students will design a user interface (typically an app or circuit board) that may control some output device (like a circuit board). It will be necessary for students to develop pseudocode or algorithms to aid in the coding process. Students will need to complete the problem-solving process during this lesson plan which will include testing a revising the prototype.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 21 :
15) Discuss unique perspectives and needs of a global culture when developing computational artifacts, including options for accessibility for all users.

Example: Would students create a webpage aimed at reaching a village of users that have no way access to the Internet?

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 21 :
15) Critique computational artifacts, including options for accessibility for all users, with respect to the needs of a global culture.

[DLIT] (8) 22 :
16) Present content designed for specific audiences through an appropriate medium.

Example: Create and share a help video for a senior's center that provides tips for online safety.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 4 Chapter 2 Lesson 11: Prototype Testing (18-19)
URL: https://studio.code.org/s/csd4-2018/stage/11/puzzle/1
Description:

In this lesson, teams test out their paper prototypes with other members of the class. With one student role playing the computer, one narrating, and the rest observing, teams will get immediate feedback on their app designs which will inform the next version of their app prototypes.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 21 :
15) Discuss unique perspectives and needs of a global culture when developing computational artifacts, including options for accessibility for all users.

Example: Would students create a webpage aimed at reaching a village of users that have no way access to the Internet?

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 21 :
15) Critique computational artifacts, including options for accessibility for all users, with respect to the needs of a global culture.

[DLIT] (8) 22 :
16) Present content designed for specific audiences through an appropriate medium.

Example: Create and share a help video for a senior's center that provides tips for online safety.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 4 Chapter 2 Lesson 12: Digital Design (18-19)
URL: https://studio.code.org/s/csd4-2018/stage/12/puzzle/1
Description:

Having developed, tested, and gathered feedback on a paper prototype, teams now move to App Lab to build the next iteration of their apps. Using the drag-and-drop Design Mode, each team member builds out at least one page of their team's app, responding to feedback that was received in the previous round of testing.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 21 :
15) Critique computational artifacts, including options for accessibility for all users, with respect to the needs of a global culture.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 4 Chapter 2 Lesson 13: Linking Screens (18-19)
URL: https://studio.code.org/s/csd4-2018/stage/13/puzzle/1
Description:

Building on the screens that the class designed in the previous lesson, teams combine screens into a single app. Simple code can then be added to make button clicks change to the appropriate screen.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 21 :
15) Discuss unique perspectives and needs of a global culture when developing computational artifacts, including options for accessibility for all users.

Example: Would students create a webpage aimed at reaching a village of users that have no way access to the Internet?

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 21 :
15) Critique computational artifacts, including options for accessibility for all users, with respect to the needs of a global culture.

[DLIT] (8) 22 :
16) Present content designed for specific audiences through an appropriate medium.

Example: Create and share a help video for a senior's center that provides tips for online safety.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 4 Chapter 2 Lesson 14: Testing the App (18-19)
URL: https://studio.code.org/s/csd4-2018/stage/14/puzzle/1
Description:

Teams run another round of user testing, this time with their interactive prototype. Feedback gathered from this round of testing will inform the final iteration of the app prototypes.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 12 :
6) Identify steps in developing solutions to complex problems using computational thinking.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 11 :
5) Solve a complex problem using computational thinking.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 11 :
5) Discuss the efficiency of an algorithm or technology used to solve complex problems.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 1 Chapter 1 Lesson 3: Exploring Problem Solving
URL: https://studio.code.org/s/csd1-2018/stage/3/puzzle/1
Description:

In this lesson, the class applies the problem-solving process to three different problems: a word search, a seating arrangement for a birthday party, and planning a trip. The problems grow increasingly complex and poorly defined to highlight how the problem-solving process is particularly helpful when tackling these types of problems.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (6) 12 :
6) Identify steps in developing solutions to complex problems using computational thinking.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

[DLIT] (7) 11 :
5) Solve a complex problem using computational thinking.

[DLIT] (7) 14 :
8) Formulate a narrative for each step of a process and its intended result, given pseudocode or code.

[DLIT] (7) 17 :
11) Demonstrate positive, safe, legal, and ethical habits when creating and sharing digital content and identify the consequences of failing to act responsibly.

[DLIT] (7) 22 :
16) Construct content designed for specific audiences through an appropriate medium.

Examples: Design a multi-media children's e-book with an appropriate readability level.

[DLIT] (7) 23 :
17) Publish content to be available for external feedback.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 6 :
R6) Produce, review, and revise authentic artifacts that include multimedia using appropriate digital tools.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 2 Chapter 2 Lesson 14: Project - Personal Portfolio Website
URL: https://studio.code.org/s/csd2-2018/stage/14/puzzle/1
Description:

In the last few days of the unit, the class finalizes their personal websites, working with peers to get feedback. Then, the students will review the rubric and put the finishing touches on the site. To cap off the unit, everyone shares their projects and how they were developed.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 11 :
5) Identify algorithms that make use of sequencing, selection or iteration.

Examples: Sequencing is doing steps in order (put on socks, put on shoes, tie laces); selection uses a Boolean condition to determine which of two parts of an algorithm are used (hair is dirty? True, wash hair; false, do not); iteration is the repetition of part of an algorithm until a condition is met (if you're happy and you know it clap your hands, when you're no longer happy you stop clapping).

[DLIT] (6) 12 :
6) Identify steps in developing solutions to complex problems using computational thinking.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 11 :
5) Solve a complex problem using computational thinking.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

[DLIT] (8) 11 :
5) Discuss the efficiency of an algorithm or technology used to solve complex problems.

[DLIT] (8) 35 :
29) Create an artifact to solve a problem using ideation and iteration in the problem-solving process.

Examples: Create a public service announcement or design a computer program, game, or application.

Subject: Digital Literacy and Computer Science (6 - 8)
Title: Computer Science Discoveries Unit 1 Chapter 1 Lesson 1: Intro to Problem Solving
URL: https://studio.code.org/s/csd1-2018/stage/1/puzzle/1
Description:

The class works in groups to design aluminum foil boats that will support as many pennies as possible. At the end of the lesson, groups reflect on their experiences with the activity and make connections to the types of problem-solving they will be doing for the rest of the course.

Note: You will need to create a free account on code.org before you can view this resource.



   View Standards     Standard(s): [DLIT] (6) 12 :
6) Identify steps in developing solutions to complex problems using computational thinking.

[DLIT] (6) 36 :
30) Discuss and apply the components of the problem-solving process.

Example: Students will devise a plan to alleviate traffic congestion around the school during drop-off and pick-up.

[DLIT] (7) 36 :
30) Apply the problem-solving process to solve real-world problems.

Subject: Digital Literacy and Computer Science (6 - 7)
Title: Computer Science Discoveries Unit 1 Chapter 1 Lesson 2: The Problem Solving Process
URL: https://studio.code.org/s/csd1-2018/stage/2/puzzle/1
Description:

This lesson introduces the formal problem-solving process that the class will use over the course of the year: Define - Prepare - Try - Reflect. The class relates these steps to the aluminum boat problem from the previous lesson, then a problem they are good at solving, then a problem they want to improve at solving. At the end of the lesson, the class collects a list of generally useful strategies for each step of the process to put on posters that will be used throughout the unit and year.

Note: You will need to create a free account on code.org before you can view this resource.



ALEX Classroom Resources: 18

Go To Top of page