

3-Dimensional Learning

Scientific & Engineering Practices

- Asking questions (science) and defining problems (engineering)
- Developing and using models
- Planning and carrying out investigations
- ◆ Analyzing and interpreting data
- Using mathematics and computational thinking
- Constructing explanations (science) and designing solutions (engineering)
- ◆ Engaging in argument from evidence
- Obtaining, evaluating, and communicating information

Crosscutting Concepts

- ♦ Patterns
- ♦ Cause and effect: Mechanism and explanation
- ♦ Scale, proportion, and quantity
- **♦ Systems and system models**
- ♦ Energy and matter: Flows, cycles, and conservation
- **♦** Structure and function
- ♦ Stability and change

Disciplinary Core Ideas

Physical Sciences:

PS1: Matter and its interactions

PS2: Motion and stability: Forces and interactions

PS3: Energy

PS4: Waves and their applications in technologies for information transfer

Life Sciences:

LS1: From molecules to organisms:

Structures and processes

LS2: Ecosystems: Interactions, energy, and dynamics

LS3: Heredity: Inheritance and variation of

LS4: Biological evolution: Unity and diversity

Earth and Space Science:

ESS1: Earth's place in the universe

ESS2: Earth's systems

ESS3: Earth and human activity

Engineering, Technology, and Applications of Science

ETS1: Engineering design

ETS2: Links among engineering, technology, science, and society

3-Dimensional Learning

Scientific & Engineering Practices

- Asking questions (science) and defining problems (engineering)
- ◆ Developing and using models
- Planning and carrying out investigations
- ◆ Analyzing and interpreting data
- Using mathematics and computational thinking
- Constructing explanations (science) and designing solutions (engineering)
- Engaging in argument from evidence
- Obtaining, evaluating, and communicating information

Crosscutting Concepts

- **♦ Patterns**
- ♦ Cause and effect: Mechanism and explanation
- ♦ Scale, proportion, and quantity
- ♦ Systems and system models
- ♦ Energy and matter: Flows, cycles, and conservation
- **♦** Structure and function
- ♦ Stability and change

Disciplinary Core Ideas

Physical Sciences:

PS1: Matter and its interactions

PS2: Motion and stability: Forces and interactions

PS3: Energy

PS4: Waves and their applications in technologies for information transfer

Life Sciences:

LS1: From molecules to organisms:

Structures and processes

LS2: Ecosystems: Interactions, energy, and dynamics

LS3: Heredity: Inheritance and variation of traits

LS4: Biological evolution: Unity and diversity

Earth and Space Science:

ESS1: Earth's place in the universe

ESS2: Earth's systems

ESS3: Earth and human activity

Engineering, Technology, and Applications of Science

ETS1: Engineering design

ETS2: Links among engineering, technology, science, and society