One way we analyze data is to look at measures of central tendency—mean, median, and mode. They are the tools to look at the information for the purpose of answering the question, “What is normal?” Understanding the measures of central tendency can help us make important life decisions. For example, averages can help us set goals or plan budgets. At the end of this lesson about central tendency, students will be able to recognize and apply the concepts of mean, median, and mode in real-life problems.
Students analyze economic data to better understand America’s middle class, its role in the economy, and its impact on economic growth. In this interactive lesson, students use media produced for How the Deck Is Stacked, and tables and graphs created from Pew Research Center and government data to examine household income and spending trends and the widening wealth gap between the upper and lower-income tiers. Interim assessments evaluate students’ ability to interpret data, make inferences, and justify conclusions. At the end of the lesson, students write an evidence-based essay on why a shrinking middle-class matters to the U.S. economy.
This exercise was developed to complement the film The National Parks of Texas by Texas PBS & Villita Media. In this activity, students will learn about estimating the number of trees in a large area based on a smaller area.
This is one way statisticians measure forests and other wide expanses of land. It's also a great way to illustrate how polling works. Scientists will interview a smaller sample size of Americans, rather than every single American, and then make estimations based on their results. In the same way, we counted smaller samples of trees, rather than all of the trees individually to get an estimate of how many trees are in the park total.
Note: The corresponding lesson plan can be found under the "Support Materials for Teachers" link on the right side of the page.
Statistics and sampling are important for human performance experiments. Students will learn several sampling types including census, random, stratified random, and convenience. Examples of real-life sampling and experimental design are also shown.
Note: This video is available in both English and Spanish audio, along with corresponding closed captions.
Learn about the origins and meaning of “p-value,” a statistical measure of the probability that has become a benchmark for success in experimental science, in this video from NOVA: Prediction by the Numbers. In the 1920s and 1930s, British scientist Ronald A. Fisher laid out guidelines for designing experiments using statistics and probability to judge results. He proposed that if experimental results were due to chance alone, they would occur less than 5 percent (0.05) of the time. The lower the p-value, the less likely the experimental results were caused by chance. Use this resource to stimulate thinking and questions about the use of statistics and probability to test hypotheses and evaluate experimental results.
Real-world examples demonstrate the benefits of histograms in this 10-minute video from the Against All Odds statistics series. Data visualization techniques help students understand the practical application of statistics in meteorology and in predicting traffic patterns. Hosted by Pardis Sabeti, this series walks students through understanding how statistics are used in everyday life.