ALEX Classroom Resources

ALEX Classroom Resources  
   View Standards     Standard(s): [DLIT] (3) 26 :
20) Compare and contrast human and computer performance on similar tasks to understand which is better suited to the task.

Examples: Sorting alphabetically, finding a path across a cluttered room.

[DLIT] (4) 22 :
16) Gather and organize data to answer a question using a variety of computing and data visualization methods.

Examples: Sorting, totaling, averaging, charts, and graphs.

[DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 9 :
3) Create an algorithm that is defined by simple pseudocode.

[DLIT] (6) 11 :
5) Identify algorithms that make use of sequencing, selection or iteration.

Examples: Sequencing is doing steps in order (put on socks, put on shoes, tie laces); selection uses a Boolean condition to determine which of two parts of an algorithm are used (hair is dirty? True, wash hair; false, do not); iteration is the repetition of part of an algorithm until a condition is met (if you're happy and you know it clap your hands, when you're no longer happy you stop clapping).

[DLIT] (7) 9 :
3) Create algorithms that demonstrate sequencing, selection or iteration.

Examples: Debit card transactions are approved until the account balance is insufficient to fund the transaction = iteration, do until.

Subject: Digital Literacy and Computer Science (3 - 7)
Title: Sorting Algorithms
URL: https://classic.csunplugged.org/sorting-algorithms/
Description:

Computers are often used to put lists into some sort of order, for example, names into alphabetical order, appointments or e-mail by date, or items in numerical order. Sorting lists helps us find things quickly, and also makes extreme values easy to see. If you sort the marks for a class test into numeric order, the lowest and highest marks become obvious.

If you use the wrong method, it can take a long time to sort a large list into order, even on a fast computer. Fortunately, several fast methods are known for sorting. In this activity, children will discover different methods for sorting and see how a clever method can perform the task much more quickly than a simple one.



   View Standards     Standard(s): [DLIT] (3) 13 :
7) Test and debug a given program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

Examples: Sequencing cards for unplugged activities, online coding practice.

[DLIT] (4) 13 :
7) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

[DLIT] (4) 22 :
16) Gather and organize data to answer a question using a variety of computing and data visualization methods.

Examples: Sorting, totaling, averaging, charts, and graphs.

[DLIT] (4) 25 :
19) Use data from a simulation to answer a question collaboratively.

[DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 14 :
8) Demonstrate that programs require known starting values that may need to be updated appropriately during the execution of programs.

Examples: Set initial value of a variable, updating variables.

[DLIT] (5) 27 :
21) Manipulate data to answer a question using a variety of computing methods and tools to collect, organize, graph, analyze, and publish the resulting information.

[DLIT] (5) 32 :
26) Connect data from a simulation to real-life events.

[DLIT] (6) 11 :
5) Identify algorithms that make use of sequencing, selection or iteration.

Examples: Sequencing is doing steps in order (put on socks, put on shoes, tie laces); selection uses a Boolean condition to determine which of two parts of an algorithm are used (hair is dirty? True, wash hair; false, do not); iteration is the repetition of part of an algorithm until a condition is met (if you're happy and you know it clap your hands, when you're no longer happy you stop clapping).

[DLIT] (6) 14 :
8) Create a program that initializes a variable.

Example: Create a flowchart in which the variable or object returns to a starting position upon completion of a task.

[DLIT] (7) 12 :
6) Create and organize algorithms in order to automate a process efficiently.

Example: Set of recipes (algorithms) for preparing a complete meal.

[DLIT] (7) 13 :
7) Create a program that updates the value of a variable in the program.

Examples: Update the value of score when a coin is collected (in a flowchart, pseudocode or program).

Subject: Digital Literacy and Computer Science (3 - 7)
Title: Sports
URL: https://csfirst.withgoogle.com/c/cs-first/en/sports/overview.html
Description:

Students use computer science to simulate extreme sports, make their own fitness gadget commercial, and create commentary for a big sporting event.

Sports is a complete theme designed to be completed over eight, 45-75 minute, sessions. For each activity, students will watch a series of videos and create one coding project with opportunities to personalize their work using “Add-Ons,” which are mini-coding challenges that build on top of the core project.

Be sure to review the Materials tab for the lesson plan, starter guide, and more.

Users will need a Google account to use this resource.



   View Standards     Standard(s): [DLIT] (3) 13 :
7) Test and debug a given program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

Examples: Sequencing cards for unplugged activities, online coding practice.

[DLIT] (4) 13 :
7) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs, in collaboration with others.

[DLIT] (4) 22 :
16) Gather and organize data to answer a question using a variety of computing and data visualization methods.

Examples: Sorting, totaling, averaging, charts, and graphs.

[DLIT] (4) 25 :
19) Use data from a simulation to answer a question collaboratively.

[DLIT] (5) 8 :
2) Create an algorithm to solve a problem while detecting and debugging logical errors within the algorithm.

Examples: Program the movement of a character, robot, or person through a maze.
Define a variable that can be changed or updated.

[DLIT] (5) 12 :
6) Create a working program in a block-based visual programming environment using arithmetic operators, conditionals, and repetition in programs.

[DLIT] (5) 14 :
8) Demonstrate that programs require known starting values that may need to be updated appropriately during the execution of programs.

Examples: Set initial value of a variable, updating variables.

[DLIT] (5) 27 :
21) Manipulate data to answer a question using a variety of computing methods and tools to collect, organize, graph, analyze, and publish the resulting information.

[DLIT] (6) 11 :
5) Identify algorithms that make use of sequencing, selection or iteration.

Examples: Sequencing is doing steps in order (put on socks, put on shoes, tie laces); selection uses a Boolean condition to determine which of two parts of an algorithm are used (hair is dirty? True, wash hair; false, do not); iteration is the repetition of part of an algorithm until a condition is met (if you're happy and you know it clap your hands, when you're no longer happy you stop clapping).

[DLIT] (6) 14 :
8) Create a program that initializes a variable.

Example: Create a flowchart in which the variable or object returns to a starting position upon completion of a task.

[DLIT] (7) 12 :
6) Create and organize algorithms in order to automate a process efficiently.

Example: Set of recipes (algorithms) for preparing a complete meal.

[DLIT] (7) 13 :
7) Create a program that updates the value of a variable in the program.

Examples: Update the value of score when a coin is collected (in a flowchart, pseudocode or program).

[DLIT] (8) 9 :
3) Create an algorithm using a programming language that includes the use of sequencing, selections, or iterations.

Example: Use a block-based or script programming language
Step 1: Start
Step 2: Declare variables a, b and c.
Step 3: Read variables a, b and c.
Step 4: If a>b
      If a>c
         Display a is the largest number.
     Else
         Display c is the largest number.
   Else
      If b>c
         Display b is the largest number.
      Else
         Display c is the greatest number.
Step 5: Stop

[DLIT] (8) 11 :
5) Discuss the efficiency of an algorithm or technology used to solve complex problems.

[DLIT] (8) 13 :
7) Create a program that includes selection, iteration, or abstraction, and initializes, and updates, at least two variables.

Examples: Make a game, interactive card, story, or adventure game.

Subject: Digital Literacy and Computer Science (3 - 8)
Title: Music & Sound
URL: https://csfirst.withgoogle.com/c/cs-first/en/music-and-sound/overview.html
Description:

In Music & Sound, students use the computer to play musical notes, create a music video, and build an interactive music display while learning how programming is used to create music.

Music is a complete theme designed to be completed over eight, 45-75 minute, sessions. For each activity, students will watch a series of videos and create one coding project with opportunities to personalize their work using “Add-Ons,” which are mini-coding challenges that build on top of the core project.

Be sure to review the Materials tab for the lesson plan, starter guide, and more.

Users will need a Google account to use this resource.



   View Standards     Standard(s): [DLIT] (3) 26 :
20) Compare and contrast human and computer performance on similar tasks to understand which is better suited to the task.

Examples: Sorting alphabetically, finding a path across a cluttered room.

[DLIT] (4) 22 :
16) Gather and organize data to answer a question using a variety of computing and data visualization methods.

Examples: Sorting, totaling, averaging, charts, and graphs.

[DLIT] (7) 7 :
1) Create a function to simplify a task.

Example: Get a writing utensil, get paper, jot notes can collectively be named "note taking".

[DLIT] (7) 9 :
3) Create algorithms that demonstrate sequencing, selection or iteration.

Examples: Debit card transactions are approved until the account balance is insufficient to fund the transaction = iteration, do until.

Subject: Digital Literacy and Computer Science (3 - 7)
Title: Computer Science Discoveries Unit 1 Chapter 2 Lesson 6: Processing
URL: https://studio.code.org/s/csd1-2018/stage/6/puzzle/1
Description:

This lesson dives deeper into the concept of processing that was introduced as part of the definition of a computer. Pairs work together to put a deck of cards in order, a form of processing information. In the end, the class discusses what processing means within the context of solving information problems.

Note: You will need to create a free account on code.org before you can view this resource.



ALEX Classroom Resources: 4

Go To Top of page