ALEX Classroom Resource

  

Robots 3D Activity Kit Guide

  Classroom Resource Information  

Title:

Robots 3D Activity Kit Guide

URL:

https://www.nationalgeographic.org/media/robots-3d-activity-kit-guide/

Content Source:

National Geographic
Type: Learning Activity

Overview:

This Robots 3D Activity Guide includes instructions on how to compile materials to create your own robotics kit. It uses hands-on activities that we use every day and easily found items. Customize your kit to fit particular grades, education standards, or topics, such as electricity and circuits; actuators, mobility and sensors; simple machines and gears; programming and operation; and real-world application.

Content Standard(s):
Science
SC2015 (2015)
Grade: 3
4 ) Apply scientific ideas about magnets to solve a problem through an engineering design project (e.g., constructing a latch to keep a door shut, creating a device to keep two moving objects from touching each other such as a maglev system).*


NAEP Framework
NAEP Statement::
P4.5: Magnets can repel or attract other magnets. They can also attract certain nonmagnetic objects at a distance.


Unpacked Content
Scientific And Engineering Practices:
Constructing Explanations and Designing Solutions
Disciplinary Core Idea: Motion and Stability: Forces and Interactions
Evidence Of Student Attainment:
Students:
  • Identify and describe a simple design problem that can be solved by applying a scientific understanding of the forces between interacting magnets.
  • Identify and describe the scientific ideas necessary for solving the problem.
  • Identify and describe the criteria for a successful solution to the problem.
  • Identify and describe the constraints (limits) for solving the problem.
Teacher Vocabulary:
  • Magnet
  • Properties
  • Engineering Design Process (Ask, Imagine, Plan, Create, Improve)
  • Attract
  • Repel
  • Forces
Knowledge:
Students know:
  • Magnetic forces between a pair of objects do not require that the objects be in contact with each other.
  • The sizes of the forces in a magnetic situation depend on the properties of the objects, the distances apart, and their orientation relative to each other.
Skills:
Students are able to:
  • Define a problem that can be solved with magnets.
  • Apply scientific ideas about magnets.
  • Solve a problem with scientific ideas about magnets through an engineering design project.
Understanding:
Students understand that:
  • Scientific discoveries about the natural world, such as magnets, can often lead to new and improved technologies, which are developed through the engineering design process.
AMSTI Resources:
AMSTI Module:
Forces and Investigations

Alabama Alternate Achievement Standards
AAS Standard:
SCI.AAS.3.4- Apply scientific ideas about magnets to solve a problem. (e.g., using a magnet to pick up an object, using a magnet to push or pull an object)


Science
SC2015 (2015)
Grade: 4
4 ) Design, construct, and test a device that changes energy from one form to another (e.g., electric circuits converting electrical energy into motion, light, or sound energy; a passive solar heater converting light energy into heat energy).*


NAEP Framework
NAEP Statement::
P4.11: Electricity flowing through an electrical circuit produces magnetic effects in the wires. In an electrical circuit containing a battery, a bulb, and a bell, energy from the battery is transferred to the bulb and the bell, which in turn transfer the energy to their surroundings as light, sound, and heat (thermal energy).

NAEP Statement::
P4.7: Heat (thermal energy), electricity, light, and sound are forms of energy.§

NAEP Statement::
P4.8: Heat (thermal energy) results when substances burn, when certain kinds of materials rub against each other, and when electricity flows though wires. Metals are good conductors of heat (thermal energy) and electricity. Increasing the temperature of any substance requires the addition of energy.


Unpacked Content
Scientific And Engineering Practices:
Constructing Explanations and Designing Solutions
Crosscutting Concepts: Energy and Matter
Disciplinary Core Idea: Energy
Evidence Of Student Attainment:
Students:
  • Given a problem to solve, students collaboratively design a device that converts energy from one form to another. In the design, students:
Teacher Vocabulary:
  • criteria
  • constraint
  • energy
  • device
  • convert
  • design
  • construct
  • kinetic
  • potential
  • transform
  • evidence
  • engineering design process
  • ask
  • imagine
  • plan
  • create
  • improve
Knowledge:
Students know:
  • Energy can be transferred from place to place by electric currents.
Skills:
Students are able to:
  • Use scientific knowledge to generate design solutions that convert energy from one form to another.
  • Describe the given criteria and constraints of the design, which include the following:
    • The initial and final forms of energy.
    • Describe how the solution functions to transfer energy from one form to another.
  • Evaluate potential solutions in terms of the desired features.
  • Modify the design solutions to make them more effective.
Understanding:
Students understand that:
  • Energy can be transferred in various ways and between objects.
  • Engineers improve existing technologies or develop new ones but are limited by available resources.

Alabama Alternate Achievement Standards
AAS Standard:
SCI.AAS.4.4- Identify common sources of energy used every day (e.g., electricity, gas, sun).


Tags: engineering, robot, robotic, technology
License Type: Custom Permission Type
See Terms: https://www.nationalgeographic.org/terms-of-service/
For full descriptions of license types and a guide to usage, visit :
https://creativecommons.org/licenses
Accessibility
Comments
  This resource provided by:  
Author: Stephanie Carver