ALEX Classroom Resource

  

Weather and Climate StudyJam

  Classroom Resource Information  

Title:

Weather and Climate StudyJam

URL:

https://studyjams.scholastic.com/studyjams/jams/science/weather-and-climate/weather-and-climate.htm

Content Source:

Other
http://studyjams.scholastic.com/
Type: Audio/Video

Overview:

Weather is the condition of the outside air at any time or place, and it is constantly changing. The climate, on the other hand, gives the big picture, or what the weather is like over a long period of time.

The classroom resource provides a video that will describe the different characteristics of weather and climate. After utilizing this resource, the students can complete the short test to assess their understanding.

Content Standard(s):
Science
SC2015 (2015)
Grade: 5
14 ) Use a model to represent how any two systems, specifically the atmosphere, biosphere, geosphere, and/or hydrosphere, interact and support life (e.g., influence of the ocean on ecosystems, landform shape, and climate; influence of the atmosphere on landforms and ecosystems through weather and climate; influence of mountain ranges on winds and clouds in the atmosphere).

Unpacked Content
Scientific And Engineering Practices:
Developing and Using Models
Crosscutting Concepts: Systems and System Models
Disciplinary Core Idea: Earth's Systems
Evidence Of Student Attainment:
Students:
  • Develop a model using an example to describe ways the geosphere, biosphere, hydrosphere, and/or atmosphere interact.
Teacher Vocabulary:
  • Atmosphere
  • Hydrosphere
  • Geosphere
  • Biosphere
  • Model
  • Phenomenon
  • System
  • Earth
Knowledge:
Students know:
  • Earth's major systems are the geosphere (solid and molten rock, soil, and sediments), the hydrosphere (water and ice), the atmosphere, and the biosphere (living things, including humans).
  • These systems interact in multiple ways to affect Earth's surface materials and processes.
  • The ocean supports a variety of ecosystems and organisms, shapes landforms, and influences climate.
  • Winds and clouds in the atmosphere interact with the landforms to determine patterns of weather.
Skills:
Students are able to:
  • Develop a model, using a specific given example of a phenomenon, to describe ways that the geosphere, biosphere, hydrosphere, and/or atmosphere interact. In the model, identify the relevant components of their example, including features of two of the following systems that are relevant for the given example:
    • Geosphere (i.e., solid and molten rock, soil, sediment, continents, mountains).
    • Hydrosphere (i.e., water and ice in the form of rivers, lakes, glaciers).
    • Atmosphere (i.e., wind, oxygen).
    • Biosphere [i.e., plants, animals (including humans)].
  • Identify and describe relationships (interactions) within and between the parts of the Earth systems identified in the model that are relevant to the example (e.g., the atmosphere and the hydrosphere interact by exchanging water through evaporation and precipitation; the hydrosphere and atmosphere interact through air temperature changes, which lead to the formation or melting of ice).
  • Use the model to describe a variety of ways in which the parts of two major Earth systems in the specific given example interact to affect the Earth's surface materials and processes in that context. Use the model to describe how parts of an individual Earth system:
    • Work together to affect the functioning of that Earth system.
    • Contribute to the functioning of the other relevant Earth system.
Understanding:
Students understand that:
  • Systems, like the atmosphere, biosphere, geosphere, and hydrosphere, can be described in terms of their components and their interactions.
AMSTI Resources:
AMSTI Module:
Dynamics of Ecosystems

Alabama Alternate Achievement Standards
AAS Standard:
SCI.AAS.5.14- Identify how the atmosphere and hydrosphere interact to support life (e.g. air, water).


Science
SC2015 (2015)
Grade: 6
Earth and Space Science
12 ) Integrate qualitative scientific and technical information (e.g., weather maps; diagrams; other visualizations, including radar and computer simulations) to support the claim that motions and complex interactions of air masses result in changes in weather conditions.

a. Use various instruments (e.g., thermometers, barometers, anemometers, wet bulbs) to monitor local weather and examine weather patterns to predict various weather events, especially the impact of severe weather (e.g., fronts, hurricanes, tornados, blizzards, ice storms, droughts).

Unpacked Content
Scientific And Engineering Practices:
Obtaining, Evaluating, and Communicating Information; Analyzing and Interpreting Data
Crosscutting Concepts: Cause and Effect
Disciplinary Core Idea: Earth's Systems
Evidence Of Student Attainment:
Students:
  • Support the claim that motions and complex interactions of air masses result in changes in weather conditions using qualitative scientific and technical information.
  • Monitor local weather using a variety of instruments.
  • Examine weather patterns to predict various weather events, especially the impact of severe weather.
Teacher Vocabulary:
  • Integrate
  • Qualitative scientific information
  • Technical information
  • Weather map
  • Radar
  • Visualization
  • Weather
  • Air mass
  • Temperature
  • Pressure
  • Humidity
  • Precipitation
  • Wind
  • Uniform
  • Temperature
  • Moisture
  • Landform
  • Current
  • Probability
  • Atmosphere
  • Monitor
  • Instruments
  • Predict
  • Weather patterns
  • Severe weather
  • Temperature
  • Moisture
  • Pressure
  • Humidity
  • Precipitation
  • Wind
  • Atmosphere
Knowledge:
Students know:
  • Qualitative scientific and technical information may include weather maps, diagrams, and visualizations, including radar and computer simulations.
  • Qualitative scientific information may be obtained through laboratory experiments.
  • Weather is the condition of the atmosphere as defined by temperature, pressure, humidity, precipitation, and wind.
  • An air mass is a large body of air with uniform temperature, moisture, and pressure.
  • Air masses flow from regions of high pressure to low pressure, causing weather at a fixed location to change over time.
  • Sudden changes in weather can result when different air masses collide.
  • The distribution and movement of air masses can be affected by landforms, ocean temperatures, and currents.
  • Relationships exist between observed, large-scale weather patterns and the location or movement of air masses, including patterns that develop between air masses (e.g., cold fronts may be characterized by thunderstorms).
  • Due to the complexity and multiple causes of weather patterns, probability must be used to predict the weather.*Local atmospheric conditions (weather) may be monitored by collecting data on temperature, pressure, humidity, precipitation, and wind.
  • Instruments may be used to measure local weather conditions. These instruments may include, but are not limited to, thermometers, barometers, and anemometers.
  • Weather events, specifically severe weather, can be predicted based on weather patterns.
  • Severe weather may include, but is not limited to, fronts, thunderstorms, hurricanes, tornadoes, blizzards, ice storms, and droughts.
Skills:
Students are able to:
  • Make a claim, to be supported by evidence, to support or refute an explanation or model for a given phenomenon, including the idea that motions and complex interactions of air masses result in changes in weather conditions.
  • Identify evidence to support the claim from the given materials including qualitative scientific and technical information.
  • Evaluate the evidence for its necessity and sufficiency for supporting the claim.
  • Determine whether the evidence is sufficient to determine causal relationships between the motions and complex interactions of air masses and changes in weather conditions.
  • Consider alternative interpretations of the evidence and describe why the evidence supports the claim they are making, as opposed to any alternative claims.
  • Use reasoning to connect the evidence and evaluation to the claim that motions and complex interactions of air masses result in changes in weather conditions.
  • Use instruments to collect local weather data.
  • Monitor local weather data.
  • Use patterns observed from collected data to provide causal accounts for weather events and make predictions.
Understanding:
Students understand that:
  • The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns. Because these patterns are so complex, weather can only be predicted based on probability.
  • Instruments may be used to monitor local weather.
  • Weather patterns can be used to predict weather events.
AMSTI Resources:
AMSTI Module:
Understanding Weather and Climate (for both 12 and 12a)

Alabama Alternate Achievement Standards
AAS Standard:
SCI.AAS.6.12- Recognize interactions of air masses as the cause of changes in weather.
SCI.AAS.6.12a- Distinguish which scientific instrument would be used to measure weather conditions (i.e., temperature, wind speed, and air pressure); identify weather conditions including sunshine, clouds, rain, ice storms, and blizzards.


Science
SC2015 (2015)
Grade: 9-12
Earth and Space Science
15 ) Obtain, evaluate, and communicate information to verify that weather (e.g., temperature, relative humidity, air pressure, dew point, adiabatic cooling, condensation, precipitation, winds, ocean currents, barometric pressure, wind velocity) is influenced by energy transfer within and among the atmosphere, lithosphere, biosphere, and hydrosphere.

a. Analyze patterns in weather data to predict various systems, including fronts and severe storms.

b. Use maps and other visualizations to analyze large data sets that illustrate the frequency, magnitude, and resulting damage from severe weather events in order to predict the likelihood and severity of future events.


NAEP Framework
NAEP Statement::
E12.10b: This energy transfer is influenced by dynamic processes such as cloud cover, atmospheric gases, and Earth's rotation, as well as static conditions such as the positions of mountain ranges, oceans, seas, and lakes.


Unpacked Content
Scientific And Engineering Practices:
Analyzing and Interpreting Data; Obtaining, Evaluating, and Communicating Information
Crosscutting Concepts: Patterns; Systems and System Models; Energy and Matter
Disciplinary Core Idea: Earth's Systems
Evidence Of Student Attainment:
Students:
  • Compare and contrast the means of describing weather conditions.
  • Classify the variety of instruments that measure weather conditions.
  • Use the concept of energy flow to show how air masses and fronts create weather.
  • Analyze a sequence of weather maps for a region over time to show the consistency of weather models.
  • Depict graphically the flow of energy throughout the stages of thunderstorm development.
  • Communicate information detailing Earth's major climate zones.
Teacher Vocabulary:
  • weather
  • air temperature
  • humidity
  • fronts
  • air pressure
  • storms
  • precipitation
  • wind direction
  • wind speed
  • air masses
  • barometer
  • thermometer
  • anemometer
  • wind vane
  • rain gauge
  • psychrometer
  • front
  • warm front
  • cold front
  • air mass
  • highs
  • lows
  • isobar
  • tornado
  • lightning
  • thunder
  • hurricane
  • climate zone
  • temperate
  • tropical
  • polar
Knowledge:
Students know:
  • Weather is the condition of the atmosphere at a given place and time.
  • Weather and climate are shaped by complex interactions involving sunlight, the ocean, the atmosphere, ice, landforms, and living things.
  • Energy is redistributed globally through ocean currents and also through atmospheric circulation.
  • Sunlight heats Earth's surface, which in turn heats the atmosphere.
  • Temperature patterns, together with the Earth's rotation and the configuration of continents and oceans, control the large-scale patterns of atmospheric circulation.
  • Winds gain energy and water vapor content as they cross hot ocean regions, which can lead to tropical storms.
  • Prediction Center maps provide weather forecasts and climate patterns based on analyses of observational data.
Skills:
Students are able to:
  • Analyze data in patterns to predict the outcome of an event.
  • Analyze data models to predict outcome of an event.
Understanding:
Students understand that:
  • The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns.
  • Weather, hydrologic, and climate forecasts and warnings protect life and property.
  • Weather, hydrologic, and climate forecasts and warnings protect life and property.

Alabama Alternate Achievement Standards
AAS Standard:
SCI.AAS.ESS.HS.15- Identify weather conditions, including temperature, wind speed, humidity, and severe weather events (e.g., tornadoes, hurricanes, floods).


Tags: atmosphere, climate, meteorologist, precipitation, weather
License Type: Custom Permission Type
See Terms: http://www.scholastic.com/terms.htm
For full descriptions of license types and a guide to usage, visit :
https://creativecommons.org/licenses
Accessibility
Comments

The test may be completed as a whole group or independently on student devices.

  This resource provided by:  
Author: Hannah Bradley