ALEX Classroom Resource

  

Changing State: Condensation

  Classroom Resource Information  

Title:

Changing State: Condensation

URL:

https://www.middleschoolchemistry.com/lessonplans/chapter2/lesson3

Content Source:

Other
American Chemical Society
Type: Lesson/Unit Plan

Overview:

In this lesson, students investigate the condensation of water vapor on the inside of a plastic cup. Then they design an experiment to see if cooling water vapor, even more, affects the rate of condensation. Students also relate evaporation and condensation to the water cycle.

Students will be able to describe on the molecular level how cooling water vapor causes condensation. Students will also describe the roles evaporation and condensation play in the water cycle.

Content Standard(s):
Science
SC2015 (2015)
Grade: 6
Earth and Space Science
7 ) Use models to construct explanations of the various biogeochemical cycles of Earth (e.g., water, carbon, nitrogen) and the flow of energy that drives these processes.


NAEP Framework
NAEP Statement::
E12.11: Earth is a system containing essentially a fixed amount of each stable chemical atom or element. Most elements can exist in several different chemical forms. Earth elements move within and between the lithosphere, atmosphere, hydrosphere, and biosphere as part of biogeochemical cycles.

NAEP Statement::
E8.14a: Water, which covers the majority of Earth's surface, circulates through the crust, oceans, and atmosphere in what is known as the water cycle.

NAEP Statement::
E8.14b: Water evaporates from Earth's surface, rises and cools as it moves to higher elevations, condenses as clouds, falls as rain or snow, and collects in lakes, oceans, soil, and underground.


Unpacked Content
Scientific And Engineering Practices:
Developing and Using Models
Crosscutting Concepts: Stability and Change
Disciplinary Core Idea: Earth's Systems
Evidence Of Student Attainment:
Students:
  • Use models to explain the various biogeochemical cycles of Earth and the flow of energy that drives these processes.
Teacher Vocabulary:
  • Biogeochemical
  • Biotic
  • Abiotic
  • Atom
  • Water cycle
  • Carbon cycle
  • Nitrogen cycle
  • Chemical compound
  • Hydrogen
  • Oxygen
  • Gravity
  • Atmosphere
  • Water vapor
  • Crystallize
  • Transpiration
  • Evaporation
  • Condensation
  • Precipitation
  • Glacier
  • Aquifer
  • Ice sheet
  • Organism
  • Decompose
  • Respiration
  • Element
  • Chemical process
  • Ecosystem
  • Geosphere
  • Carbon dioxide
  • Methane
  • Photosynthesis
  • Fossil fuel
  • Nitrogen
  • Carbon
  • Amino acid
  • Protein
  • DNA
  • Molecule
  • Bacteria
  • Fertilizer
  • Livestock
  • Nitrate
Knowledge:
Students:
  • The cycle of atoms between living and non-living things is known as a biogeochemical cycle.
  • Biogeochemical cycles interact through biotic and abiotic processes.
  • Biotic involves living or once living things such as plants, animals, and bacteria.
  • Abiotic involves nonliving things like air, rocks, and water.
  • Biogeochemical cycles may include, but are not limited to, the water, carbon, and nitrogen cycles.
  • The water cycle is the continuous process by which water is circulated throughout the earth and the atmosphere.
  • Water is a chemical compound made up of the elements hydrogen and oxygen.
  • Global movements of water and its changes in form are propelled by sunlight and gravity.
  • Energy from the sun drives the movement of water from the Earth (e.g., oceans, landforms, plants) into the atmosphere through transpiration and evaporation.
  • Water vapor in the atmosphere can cool and condense to form rain or crystallize to form snow or ice, which returns to Earth when pulled down by gravity.
  • Water continually cycles among land, ocean, and atmosphere via transpiration, evaporation, condensation and crystallization, and precipitation, as well as downhill flows on land.
  • Gravity causes water on land to move downhill (e.g., rivers and glaciers) and much of it eventually flows into oceans.
  • Some liquid and solid water remains on land in the form of bodies of water, glaciers and ice sheets or can be stored below ground in aquifers.
  • Some water remains in the tissues of plants and other living organisms, and this water is released when the tissues decompose. Water is also released by plants through transpiration and by other living organisms through respiration.
  • Carbon is an element found in the oceans, air, rocks, soil and all living organisms.
  • Carbon is the fundamental building block of life and an important component of many chemical processes.
  • In a process called the carbon cycle, carbon is exchanged among Earth's oceans, atmosphere, ecosystem, and geosphere.
  • Carbon is present in the atmosphere primarily attached to oxygen in a gas called carbon dioxide (CO2), but is also found in other less abundant but climatically significant gases, such as methane (CH4).
  • With the help of the Sun, through the process of photosynthesis, carbon dioxide is pulled from the air to make plant food.
  • Through food chains, the carbon that is in plants moves to the animals that eat them. When an animal eats another animal, the carbon is transferred.
  • When plants and animals die, their bodies, wood, and leaves decay bringing the carbon into the ground. Some become buried miles underground and will become fossil fuels in millions and millions of years.
  • Organisms release carbon dioxide gas through a process called respiration.
  • When humans burn fossil fuels to power factories, power plants, cars and trucks, most of the carbon quickly enters the atmosphere as carbon dioxide gas.
  • The oceans, and other bodies of water, soak up some carbon from the atmosphere.
  • Nitrogen is an element found in living things like plants and animals.
  • Nitrogen is also an important part of non-living things like the air and the soil.
  • Nitrogen atoms move slowly between living things, dead things, the air, soil and water.
  • The continuous process by which nitrogen is exchanged between organisms and the environment is called the nitrogen cycle.
  • Most of the nitrogen on Earth is in the atmosphere as molecules of nitrogen gas (N2).
  • All plants and animals need nitrogen to make amino acids, proteins, and DNA, but the nitrogen in the atmosphere is not in a form that they can use.
  • The molecules of nitrogen in the atmosphere can become usable for living things when they are broken apart during lightning strikes or fires, by certain types of bacteria, or by bacteria associated with bean plants.
  • Most plants get the nitrogen they need to grow from the soils or water in which they live. Animals get the nitrogen they need by eating plants or other animals that contain nitrogen.
  • When organisms die, their bodies decompose bringing the nitrogen into soil on land or into ocean water. Bacteria alter the nitrogen into a form that plants are able to use. Other types of bacteria are able to change nitrogen dissolved in waterways into a form that allows it to return to the atmosphere.
  • Certain actions of humans can cause changes to the nitrogen cycle and the amount of nitrogen that is stored in the land, water, air, and organisms.
  • The use of nitrogen-rich fertilizers can add too much nitrogen in nearby waterways as the fertilizer washes into streams and ponds. The waste associated with livestock farming also adds large amounts of nitrogen into soil and water. The increased nitrate levels cause plants to grow rapidly until they use up the supply and die. The number of plant-eating animals will increase when the plant supply increases and then the animals are left without any food when the plants die.
Skills:
Students are able to:
  • Use a model of the various biogeochemical cycles and identify the relevant components.
  • Describe the relationships between components of the model including the flow of energy.
  • Articulate a statement that relates a given phenomenon to a scientific idea, including the various biogeochemical cycles of Earth and the flow of energy that drives these processes.
Understanding:
Students understand that:
  • The transfer of energy drives the motion and/or cycling of matter of the various biogeochemical cycles.
AMSTI Resources:
AMSTI Module:
Understanding Weather and Climate

Alabama Alternate Achievement Standards
AAS Standard:
SCI.AAS.6.7- Use a model to explain the water cycle, including evaporation, condensation, and precipitation; recognize that the sun provides the energy which drives the water cycle.


Science
SC2015 (2015)
Grade: 8
Physical Science
4 ) Design and conduct an experiment to determine changes in particle motion, temperature, and state of a pure substance when thermal energy is added to or removed from a system.


NAEP Framework
NAEP Statement::
P12.5: Changes of state require a transfer of energy. Water has a very high specific heat, meaning it can absorb a large amount of energy while producing only small changes in temperature.

NAEP Statement::
P12.8: Atoms and molecules that compose matter are in constant motion (translational, rotational, or vibrational).

NAEP Statement::
P8.1: Properties of solids, liquids, and gases are explained by a model of matter that is composed of tiny particles in motion.

NAEP Statement::
P8.6a: Changes of state are explained by a model of matter composed of tiny particles that are in motion.

NAEP Statement::
P8.6b: When substances undergo changes of state, neither atoms nor molecules themselves are changed in structure.

NAEP Statement::
P8.6c: Mass is conserved when substances undergo changes of state.


Unpacked Content
Scientific And Engineering Practices:
Planning and Carrying out Investigations
Crosscutting Concepts: Systems and System Models
Disciplinary Core Idea: Matter and Its Interactions
Evidence Of Student Attainment:
Students:
  • Design an experiment to determine changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed from a system.
  • Conduct an experiment to determine changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed from a system.
Teacher Vocabulary:
  • Particle motion
  • Temperature
  • State [of Matter]
  • Pure substance
  • Thermal Energy
  • Kinetic Energy
  • System
Knowledge:
Students know:
  • Changes in particle motion of a pure substance occur when thermal energy is added to or removed from a system.
  • Changes in temperature of a pure substance occur when thermal energy is added to or removed from a system.
  • Changes in state of a pure substance occur when thermal energy is added to or removed from a system.
Skills:
Students are able to:
  • Identify the phenomena under investigation, which includes changes in particle motion, temperature, and state of a pure substance when thermal energy is added to or removed from a system.
  • Identify the purpose of the investigation, which includes determining changes in particle motion, temperature, and state of a pure substance when thermal energy is added to or removed from a system.
  • Develop a plan for the investigation individually or collaboratively.
  • Describe factors used in the investigation including appropriate units (if necessary), independent and dependent variables, controls and number of trials for each experimental condition.
  • Perform the investigation as prescribed by the plan.
  • Use data from the investigation to provide an causal account of the relationship between the addition of removal of thermal energy from a substance and the change in the average kinetic energy of the particles in a substance.
Understanding:
Students understand that:
  • Adding or removing thermal energy from a system causes changes in particle motion of a pure substance.
  • Adding or removing thermal energy from a system causes changes in temperature of a pure substance.
  • Adding or removing thermal energy from a system causes changes in state of a pure substance.
AMSTI Resources:
AMSTI Module:
Exploring the Properties of Matter

Alabama Alternate Achievement Standards
AAS Standard:
SCI.AAS.8.4- Recognize that changes in temperature can cause changes in the state of matter of a substance; recognize that these changes are a result of changes in particle motion.


Tags: condensation, evaporation, molecular level, water cycle, water vapor
License Type: Custom Permission Type
See Terms: https://www.acs.org/content/acs/en/terms.html
For full descriptions of license types and a guide to usage, visit :
https://creativecommons.org/licenses
AccessibilityVideo resources: includes closed captioning or subtitles
Comments
  This resource provided by:  
Author: Stephanie Carver