# ALEX Lesson Plan

## The Barn Owl Pellet Lab

You may save this lesson plan to your hard drive as an html file by selecting "File", then "Save As" from your browser's pull down menu. The file name extension must be .html.

This lesson provided by:
 Author: Shirley Scarbrough Organization: Alabama State University Math-science Pa And Author: Ruth Liddell System: Informal Education Partner School: Informal Education Partner And Author: Debbie Payne Organization: ResultSearch Consulting
General Lesson Information
 Lesson Plan ID: 33346 Title: The Barn Owl Pellet Lab Overview/Annotation: The Barn Owl Pellet Lab includes hands-on, inquiry-based activities. During this lab activity, students will dissect two Barn Owl pellets. The dissection allows students to compare the data collected from the two pellets. The student worksheets that accompany this lesson require students to: make predictions, perform mathematical calculations, construct a graph, classify bones into types, separate bones by prey type, and draw conclusions about the owl’s environment based on the dissection findings.
Associated Standards and Objectives
Content Standard(s):
 Science SC2015 (2015) Grade: 7 Life Science 5 ) Examine the cycling of matter between abiotic and biotic parts of ecosystems to explain the flow of energy and the conservation of matter. a. Obtain, evaluate, and communicate information about how food is broken down through chemical reactions to create new molecules that support growth and/or release energy as it moves through an organism. b. Generate a scientific explanation based on evidence for the role of photosynthesis and cellular respiration in the cycling of matter and flow of energy into and out of organisms. NAEP Framework NAEP Statement:: L8.3c: Food is used to provide energy for the work that cells do and is a source of the molecular building blocks from which needed materials are assembled. NAEP Statement:: L8.4a: Plants are producers; that is, they use the energy from light to make sugar molecules from the atoms of carbon dioxide and water.‡ NAEP Statement:: L8.5a: All animals, including humans, are consumers that meet their energy needs by eating other organisms or their products. NAEP Statement:: L8.5b: Consumers break down the structures of the organisms they eat to make the materials they need to grow and function. NAEP Statement:: L8.5c: Decomposers, including bacteria and fungi, use dead organisms or their products to meet their energy needs. NAEP Statement:: P8.13a: Nuclear reactions take place in the Sun. NAEP Statement:: P8.13b: In plants, light from the Sun is transferred to oxygen and carbon compounds, which, in combination, have chemical potential energy (photosynthesis). Unpacked Content Scientific And Engineering Practices:Constructing Explanations and Designing Solutions; Asking Questions and Defining Problems; Obtaining, Evaluating, and Communicating InformationCrosscutting Concepts: Energy and MatterDisciplinary Core Idea: Ecosystems: Interactions, Energy, and DynamicsEvidence Of Student Attainment:Students: Explain that matter is cycled and conserved within an ecosystem's abiotic factors and biotic organisms. Gather and synthesize information with attention given to accuracy, credibility, and bias. Explain that food moves through a series of chemical reactions in which it is broken down or rearranged to support growth, or release energy, using collected evidence. Articulate the idea that photosynthesis and cellular respiration result in the cycling of matter and energy into and out of organisms using collected evidence from a variety of sources.Teacher Vocabulary:Abiotic Organisms as producers, consumers, and/or decomposers Biotic Evaluate Ecosystem Communicate Chemical reaction Molecules Photosynthesis Food web Cellular respiration Energy Matter Energy transferKnowledge:Students know: Organisms can be classified as producers, consumers, and/or decomposers. Abiotic parts of an ecosystem provide matter to biotic organisms. Biotic organisms of an ecosystem provide matter to abiotic parts. Energy flow within an ecosystem. The number of each type of atom is the same before and after chemical reactions, indicating that the matter ingested as food is conserved as it moves through an organism to support growth. During cellular respiration, molecules of food undergo chemical reactions with oxygen to release stored energy. The atoms in food are rearranged through chemical reactions to form new molecules. All matter (atoms) used by the organism for growth comes from the products of the chemical reactions involving the matter taken in by the organism. Food molecules taken in by the organism are broken down and can then be rearranged to become the molecules that comprise the organism (e.g., the proteins and other macromolecules in a hamburger can be broken down and used to make a variety of tissues in humans). As food molecules are rearranged, energy is released and can be used to support other processes within the organisms. Plants, algae, and photosynthetic microorganisms require energy and must take in carbon dioxide and water to survive. Energy from the sun is used to combine molecules (e.g., carbon dioxide and water) into food molecules (e.g., sugar) and oxygen. Animals take in food and oxygen to provide energy and materials for growth and survival. Some animals eat plants algae and photosynthetic microorganisms, and some animals eat other animals, which have themselves eaten photosynthetic organisms.Skills:Students are able to: Articulate a statement that relates a given phenomenon to a scientific idea, including the cycling of matter and flow of energy among biotic and abiotic parts of ecosystems. Identify and use multiple valid and reliable sources of evidence to construct an explanation. Use reasoning to connect the evidence and support an explanation. Obtain information about how food is broken down through chemical reactions to create new molecules that support growth and/or release energy as it moves through an organism from published, grade-level appropriate material from multiple sources. Determine and describe whether the gathered information is relevant. Use information to communicate how food is broken down through chemical reactions to create new molecules that support growth and/or release energy as it moves through an organism. Articulate a statement that relates a given phenomenon to a scientific idea, including the idea that photosynthesis and cellular respiration cycle matter and energy. Identify and use multiple valid and reliable sources of evidence to explain the roles of photosynthesis and cellular respiration in cycling matter and energy. Use reasoning to connect the evidence and support an explanation of the roles of photosynthesis and cellular respiration in the cycling of matter and flow of energy into and out of organisms.Understanding:Students understand that: There is a transfer of energy and a cycling of atoms that were originally captured from the nonliving parts of the ecosystem by the producers. The transfer of matter (atoms) and energy between living and nonliving parts of the ecosystem at every level within the system, which allows matter to cycle and energy to flow within and outside of the system. The atoms that make up the organisms in an ecosystem are cycled repeatedly between the living and nonliving parts of the ecosystem. Matter and energy are conserved through transfers within and outside of the ecosystem. Relationship among producers, consumers, and decomposers (e.g., decomposers break down consumers and producers via chemical reactions and use the energy released from rearranging those molecules for growth and development. Within individual organisms, food moves through a series of chemical reactions in which it is broken down and rearranged to form new molecules, to support growth, or to release energy. Plants, algae, and photosynthetic microorganisms take in matter and use energy from the sun to produce organic molecules that they can use or store, and release oxygen into the environment through photosynthesis. Plants use the food they have made for energy, growth, etc. Animals depend on matter from plants for growth and survival, including the following: Eating photosynthetic organisms, thus acquiring the matter they contain, that they gained through photosynthesis. Breathing in oxygen, which was released when plants completed photosynthesis. Animals acquire their food from photosynthetic organisms (or organisms that have eaten those organisms) and their oxygen from the products of photosynthesis, all food and most of the oxygen animals use from life processes are the results of energy from the sun driving matter flows through the process of photosynthesis. Photosynthesis has an important role in energy and matter cycling within plants as well as from plants and other organisms.AMSTI Resources:AMSTI Module: Investigating Biodiversity and Interdependence Alabama Alternate Achievement Standards AAS Standard: SCI.AAS.7.5- Distinguish between abiotic and biotic parts of an ecosystem. SCI.AAS.7.5a- Recognize that food is broken down through chemical reactions to provide energy needed for the growth of organisms. SCI.AAS.7.5b- Recognize that plants and animals depend on one another for the exchange of carbon dioxide and oxygen; identify photosynthesis as the process by which plants transfer energy from the sun into materials needed for growth.

Local/National Standards:

Primary Learning Objective(s):

Students will dissect an owl pellet.

Students will identify the animal skulls and other bones found in the pellet.

Students will collaborate with group members to gather evidence about the owl’s diet based on data gathered from the dissection.

Students will use the data collected to create a frequency distribution graph.

Students will create an accurate food chain based on evidence gathered during the inquiry.